Previous |  Up |  Next

Article

Title: On Hankel transform and Hankel convolution of Beurling type distributions having upper bounded support (English)
Author: Belhadj, M.
Author: Betancor, J. J.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 2
Year: 2004
Pages: 315-336
Summary lang: English
.
Category: math
.
Summary: In this paper we study Beurling type distributions in the Hankel setting. We consider the space ${\mathcal E}(w)^{\prime }$ of Beurling type distributions on $(0, \infty )$ having upper bounded support. The Hankel transform and the Hankel convolution are studied on the space ${\mathcal E}(w)^{\prime }$. We also establish Paley Wiener type theorems for Hankel transformations of distributions in ${\mathcal E}(w)^{\prime }$. (English)
Keyword: Beurling distributions
Keyword: Hankel transformation
Keyword: convolution
MSC: 44A15
MSC: 46F10
MSC: 46F12
idZBL: Zbl 1080.46025
idMR: MR2059253
.
Date available: 2009-09-24T11:12:52Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127890
.
Reference: [1] G. Altenburg: Bessel transformationen in Raumen von Grundfunktionen uber dem Intervall $\Omega = (0, \infty )$ un derem Dualraumen.Math. Nachr. 108 (1982), 197–218. MR 0695127
Reference: [2] M. Belhadj and J. J. Betancor: Beurling distributions and Hankel transforms.Math. Nachr 233-234 (2002), 19–45. MR 1879861
Reference: [3] M. Belhadj and J. J. Betancor: Hankel transformation and Hankel convolution of tempered Beurling distributions.Rocky Mountain J.  Math 31 (2001), 1171–1203. MR 1895292, 10.1216/rmjm/1021249437
Reference: [4] J. J. Betancor and I. Marrero: The Hankel convolution and the Zemanian spaces  $B_\mu $ and $B_\mu ^{\prime }$.Math. Nachr. 160 (1993), 277–298. MR 1245003
Reference: [5] J. J. Betancor and I. Marrero: Structure and convergence in certain spaces of distributions and the generalized Hankel convolution.Math. Japon. 38 (1993), 1141–1155. MR 1250341
Reference: [6] J. J. Betancor and I. Marrero: New spaces of type  $H_\mu $ and the Hankel transformation.Integral Transforms and Special Functions 3 (1995), 175–200. MR 1619757, 10.1080/10652469508819075
Reference: [7] J. J. Betancor and L. Rodríguez-Mesa: Hankel convolution on distribution spaces with exponential growth.Studia Math. 121 (1996), 35–52. MR 1414893, 10.4064/sm-121-1-35-52
Reference: [8] A. Beurling: Quasi-analyticity and General Distributions. Lectures  4 and 5.A.M.S. Summer Institute, Stanford, 1961.
Reference: [9] G. Björck: Linear partial differential operators and generalized distributions.Ark. Math. 6 (1966), 351–407. MR 0203201, 10.1007/BF02590963
Reference: [10] J. Bonet, C. Fernández and R. Meise: Characterization of the $w$-hypoelliptic convolution operators on ultradistributions.Ann. Acad. Sci. Fenn. Mathematica 25 (2000), 261–284. MR 1762416
Reference: [11] R. W. Braun and R. Meise: Generalized Fourier expansions for zero-solutions of surjective convolution operators in ${\mathcal D}_{\lbrace w\rbrace }(R)^{\prime }$.Arch. Math. 55 (1990), 55–63. MR 1059516, 10.1007/BF01199116
Reference: [12] R. W. Braun, R. Meise and B. A. Taylor: Ultradifferentiable functions and Fourier analysis.Results in Maths. 17 (1990), 206–237. MR 1052587, 10.1007/BF03322459
Reference: [13] F. M. Cholewinski: A Hankel convolution complex inversion theory.Mem. Amer. Math. Soc. 58 (1965). Zbl 0137.30901, MR 0180813
Reference: [14] S. J. L. van Eijndhoven and M. J. Kerkhof: The Hankel transformation and spaces of type  $W$. Reports on Appl. and Numer. Analysis, 10.Dept. of Maths. and Comp. Sci., Eindhoven University of Technology, 1988.
Reference: [15] D. T. Haimo: Integral equations associated with Hankel convolutions.Trans. Amer. Math. Soc. 116 (1965), 330–375. Zbl 0135.33502, MR 0185379, 10.1090/S0002-9947-1965-0185379-4
Reference: [16] C. S. Herz: On the mean inversion of Fourier and Hankel transforms.Proc. Nat. Acad. Sci. USA, 40 (1954), 996–999. Zbl 0059.09901, MR 0063477
Reference: [17] I. I. Hirschman,  Jr.: Variation diminishing Hankel transforms.J.  Analyse Math. 8 (1960/61), 307–336. MR 0157197
Reference: [18] L. Hörmander: Hypoelliptic convolution equations.Math. Scand. 9 (1961), 178–184. MR 0139838, 10.7146/math.scand.a-10633
Reference: [19] I. Marrero and J. J. Betancor: Hankel convolution of generalized functions.Rendiconti di Matematica 15 (1995), 351–380. MR 1362778
Reference: [20] J. M. Méndez: On the Bessel transforms of arbitrary order.Math. Nachr. 136 (1988), 233–239. MR 0952475, 10.1002/mana.19881360116
Reference: [21] J. M. Méndez and A. M. Sánchez: On the Schwartz’s Hankel transformation of distributions.Analysis 13 (1993), 1–18. 10.1524/anly.1993.13.12.1
Reference: [22] L. Schwartz: Theorie des distributions.Hermann, Paris, 1978. Zbl 0399.46028, MR 0209834
Reference: [23] J. de Sousa-Pinto: A generalized Hankel convolution.SIAM J.  Appl. Math. 16 (1985), 1335–1346. Zbl 0592.46038, MR 0807914, 10.1137/0516097
Reference: [24] K. Stempak: La theorie de Littlewood-Paley pour la transformation de Fourier-Bessel.C.R.  Acad. Sci. Paris 303 (Serie  I) (1986), 15–19. Zbl 0591.42014, MR 0849618
Reference: [25] G. N. Watson: A Treatise on the Theory of Bessel Functions.Cambridge University Press, Cambridge, 1959. MR 1349110
Reference: [26] A. H. Zemanian: A distributional Hankel transformation.SIAM J.  Appl. Math. 14 (1966), 561–576. Zbl 0154.13803, MR 0201930, 10.1137/0114049
Reference: [27] A. H. Zemanian: The Hankel transformation of certain distribution of rapid growth.SIAM J.  Appl. Math. 14 (1966), 678–690. MR 0211211, 10.1137/0114056
Reference: [28] A. H. Zemanian: Generalized Integral Transformations.Interscience Publishers, New York, 1968. Zbl 0181.12701, MR 0423007
.

Files

Files Size Format View
CzechMathJ_54-2004-2_5.pdf 419.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo