Previous |  Up |  Next

Article

Title: On the weak-open images of metric spaces (English)
Author: Li, Zhaowen
Author: Lin, Shou
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 2
Year: 2004
Pages: 393-400
Summary lang: English
.
Category: math
.
Summary: In this paper, we give characterizations of certain weak-open images of metric spaces. (English)
Keyword: $g$-metrizable spaces
Keyword: weak-bases
Keyword: weak-open mappings
Keyword: $\sigma $-mappings
Keyword: $\pi $-mappings
Keyword: $cs$-mappings
MSC: 54C10
MSC: 54E35
MSC: 54E40
MSC: 54E99
idZBL: Zbl 1080.54509
idMR: MR2059259
.
Date available: 2009-09-24T11:13:35Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127896
.
Reference: [1] P. Alexandroff: On some results concerning topological spaces and their continuous mappings.Proc. Sym. Gen. Top. Prague, 1961, pp. 41–54. MR 0145472
Reference: [2] A. V.  Arhangel’skii: Mappings and spaces.Russian Math. Surveys 21 (1966), 115–162. MR 0227950, 10.1070/RM1966v021n04ABEH004169
Reference: [3] F.  Siwiec: On defining a space by a weak-base.Pacific J.  Math. 52 (1974), 233–245. Zbl 0285.54022, MR 0350706, 10.2140/pjm.1974.52.233
Reference: [4] S.  Xia: Characterizations of certain $g$-first countable spaces.Adv. Math. 29 (2000), 61–64. Zbl 0999.54010, MR 1769127
Reference: [5] Y.  Tanaka and S.  Xia: Certain $s$-images of locally separable metric spaces.Q $\&$ A in Gen. Top. 14 (1996), 217–231. MR 1403347
Reference: [6] Y. Tanaka: Symmetric spaces, $g$-developable space and $g$-metrizable space.Math. Japon. 36 (1991), 71–84. MR 1093356
Reference: [7] Z. Qu and Z. Cao: Spaces with compact-countable $k$-networks.Math. Japon. 49 (1999), 199–205. MR 1687583
Reference: [8] L. Foged: On $g$-metrizability.Pacific J.  Math. 98 (1982), 327–332. Zbl 0478.54025, MR 0650013
Reference: [9] S. Lin: A note on the Arens’ space and sequential fan.Topology Appl. 81 (1997), 185–196. Zbl 0885.54019, MR 1485766, 10.1016/S0166-8641(97)00031-X
Reference: [10] S. Lin: On $g$-metrizable spaces.Chinese Ann. Math. 13 (1992), 403–409. Zbl 0770.54030, MR 1190593
Reference: [11] C. Liu and M. Dai: $g$-metrizability and $S_\omega $.Topology Appl. 60 (1994), 185–189. MR 1302472
Reference: [12] C. Liu and Y. Tanaka: Star-countable $k$-networks, compact-countable $k$-networks, and related results.Houston J.  Math. 24 (1998), 655–670. MR 1686632
Reference: [13] S. Lin: Generalized Metric Spaces and Mappings.Chinese scientific publ., Beijing, 1995.
Reference: [14] S. Lin: On sequence-covering $s$-mappings.Adv. Math. 25 (1996), 548–551. Zbl 0864.54026, MR 1453163
Reference: [15] S. Lin and Y. Tanaka: Point-countable $k$-networks, closed maps, and related results.Topology Appl. 59 (1994), 79–86. MR 1293119, 10.1016/0166-8641(94)90101-5
Reference: [16] S. Lin, Z. Li, J. Li and C. Liu: On $ss$-mappings.Northeast. Math.J. 9 (1993), 521–524. MR 1274005
Reference: [17] M. Sakai: On spaces with a star-countable $k$-network.Houston J.  Math. 23 (1997), 45–56. Zbl 0887.54023, MR 1688687
Reference: [18] G.  Gruenhage, E.  Michael and Y.  Tanaka: Spaces determined by point-countable covers.Pacific J.  Math. 113 (1984), 303–332. MR 0749538, 10.2140/pjm.1984.113.303
Reference: [19] V. I. Ponomarev: Axioms of countablility and continuous mappings.Bull. Pol. Acad., Math. 8 (1960), 127–133. MR 0116314
Reference: [20] Y.  Tanaka: $\sigma $-hereditarily closure-preserving $k$-networks and $g$-metrizability.Proc. Amer. Math. Soc. 112 (1991), 283–290. Zbl 0770.54031, MR 1049850
.

Files

Files Size Format View
CzechMathJ_54-2004-2_11.pdf 329.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo