Previous |  Up |  Next

Article

Title: On Harpers’ result concerning the bandwidths of graphs (English)
Author: Poon, Kin-Keung
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 2
Year: 2004
Pages: 401-405
Summary lang: English
.
Category: math
.
Summary: In this paper, we improve the result by Harper on the lower bound of the bandwidth of connected graphs. In addition, we prove that considerating the interior boundary and the exterior boundary when estimating the bandwidth of connected graphs gives the same results. (English)
Keyword: graphs
Keyword: bandwidth
Keyword: interior boundary
Keyword: exterior boundary
MSC: 05C78
idZBL: Zbl 1080.05530
idMR: MR2059260
.
Date available: 2009-09-24T11:13:42Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127897
.
Reference: [1] J. A. Bondy and U. S. R. Murty: Graph Theory with Applications.Macmillan, 1976. MR 0411988
Reference: [2] P. Z. Chinn, J. Chvátalová, A. K. Dewdney and N. E. Gibbs: The bandwidth problem for graphs and matrices—a survey.J.  Graph Theory 6 (1982), 223–254. MR 0666794, 10.1002/jgt.3190060302
Reference: [3] J. Chvátalová and J. Opatrný: The bandwidth problem and operations on graphs.Discrete Math. 61 (1986), 141–150. MR 0855320, 10.1016/0012-365X(86)90086-5
Reference: [4] F. R. K. Chung: Labelings of Graphs, Selected Topics in Graph Theory,  III.L.  Beineke, R.  Wilson (eds.), Academic Press, New York, 1988, pp. 151–168. MR 1205400
Reference: [5] M. R. Garey, R. L. Graham, D. S. Johnson and D. E. Knuth: Complexity results for bandwidth minimization.SIAM J.  Appl. Math. 34 (1978), 477–495. MR 0478746, 10.1137/0134037
Reference: [6] F. Harary: Problem 16.Theory of Graphs and its Applications. Proc. Symp., Smolenice, M. Fiedler (ed.), Czechoslovak Academy of Sciences, Prague, 1964. MR 0175111
Reference: [7] L. H. Harper: Optimal numberings and isoperimetric problems on graphs.J.  Combin. Theory 1 (1966), 385–393. Zbl 0158.20802, MR 0200192, 10.1016/S0021-9800(66)80059-5
Reference: [8] D. J. Kleitman and R. V. Vohra: Computing the bandwidth of interval graphs.SIAM J.  Discrete Math. 3 (1990), 373–375. MR 1061978, 10.1137/0403033
Reference: [9] R. R. Korfhage: Numberings of the vertices of graphs.Computer Science Department Technical Report  5, Purdue University, Lafayette, 1966.
Reference: [10] Peter C. B. Lam, W. C. Shiu and Y. Lin: Duality in the bandwidth problems.Congressus Numerantium 124 (1997), 117–127. MR 1605101
Reference: [11] M. M. Syslo and J. Zak: The bandwidth problem: Critical subgraphs and the solution for caterpillars.Ann. Discrete Math. 16 (1982), 281–286. MR 0686313
.

Files

Files Size Format View
CzechMathJ_54-2004-2_12.pdf 261.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo