Previous |  Up |  Next

Article

Title: The s-Perron, sap-Perron and ap-McShane integrals (English)
Author: Kim, Joo Bong
Author: Lee, Deok Ho
Author: Lee, Woo Youl
Author: Park, Chun-Gil
Author: Park, Jae Myung
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 3
Year: 2004
Pages: 545-557
Summary lang: English
.
Category: math
.
Summary: In this paper, we study the s-Perron, sap-Perron and ap-McShane integrals. In particular, we show that the s-Perron integral is equivalent to the McShane integral and that the sap-Perron integral is equivalent to the ap-McShane integral. (English)
Keyword: s-Perron integral
Keyword: sap-Perron integral
Keyword: ap-McShane integral
MSC: 26A39
MSC: 28B05
idZBL: Zbl 1080.26005
idMR: MR2086715
.
Date available: 2009-09-24T11:15:19Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127910
.
Reference: [1] P. S.  Bullen: The Burkill approximately continuous integral.J.  Austral. Math. Soc. Ser.  A 35 (1983), 236–253). Zbl 0533.26006, MR 0704431, 10.1017/S1446788700025738
Reference: [2] T. S.  Chew, and K.  Liao: The descriptive definitions and properties of the AP-integral and their application to the problem of controlled convergence.Real Analysis Exchange 19 (1993-1994), 81–97. MR 1268833, 10.2307/44153816
Reference: [3] R. A.  Gordon: Some comments on the McShane and Henstock integrals.Real Analysis Exchange 23 (1997–1998), 329–342. MR 1609917, 10.2307/44152859
Reference: [4] R. A.  Gordon: The Integrals of Lebesgue, Denjoy, Perron, and Henstock.Amer. Math. Soc., Providence, 1994. Zbl 0807.26004, MR 1288751
Reference: [5] J.  Kurzweil: On multiplication of Perron integrable functions.Czechoslovak Math.  J. 23(98) (1973), 542–566. Zbl 0269.26007, MR 0335705
Reference: [6] J.  Kurzweil, and J.  Jarník: Perron type integration on $n$-dimensional intervals as an extension of integration of step functions by strong equiconvergence.Czechoslovak Math. J. 46(121) (1996), 1–20. MR 1371683
Reference: [7] T. Y.  Lee: On a generalized dominated convergence theorem for the AP integral.Real Analysis Exchange 20 (1994–1995), 77–88. MR 1313672
Reference: [8] K.  Liao: On the descriptive definition of the Burkill approximately continuous integral.Real Analysis Exchange 18 (1992–1993), 253–260. MR 1205520, 10.2307/44133066
Reference: [9] Y. J.  Lin: On the equivalence of four convergence theorems for the AP-integral.Real Analysis Exchange 19 (1993–1994), 155–164. MR 1268841, 10.2307/44153824
Reference: [10] J. M.  Park: Bounded convergence theorem and integral operator for operator valued measures.Czechoslovak Math.  J. 47(122) (1997), 425–430. Zbl 0903.46040, MR 1461422, 10.1023/A:1022403232211
Reference: [11] J. M.  Park: The Denjoy extension of the Riemann and McShane integrals.Czechoslovak Math.  J. 50(125) (2000), 615–625. Zbl 1079.28502, MR 1777481, 10.1023/A:1022845929564
Reference: [12] A. M.  Russell: Stieltjes type integrals.J.  Austral. Math. Soc. Ser.  A 20 (1975), 431–448. Zbl 0313.26012, MR 0393379, 10.1017/S1446788700016153
Reference: [13] A. M.  Russell: A Banach space of functions of generalized variation.Bull. Austral. Math. Soc. 15 (1976), 431–438. Zbl 0333.46025, MR 0430180, 10.1017/S0004972700022863
.

Files

Files Size Format View
CzechMathJ_54-2004-3_1.pdf 370.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo