Previous |  Up |  Next

Article

Title: On the minus domination number of graphs (English)
Author: Liu, Hailong
Author: Sun, Liang
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 4
Year: 2004
Pages: 883-887
Summary lang: English
.
Category: math
.
Summary: Let $G = (V,E)$ be a simple graph. A $3$-valued function $f\:V(G)\rightarrow \lbrace -1,0,1\rbrace $ is said to be a minus dominating function if for every vertex $v\in V$, $f(N[v]) = \sum _{u\in N[v]}f(u)\ge 1$, where $N[v]$ is the closed neighborhood of $v$. The weight of a minus dominating function $f$ on $G$ is $f(V) = \sum _{v\in V}f(v)$. The minus domination number of a graph $G$, denoted by $\gamma ^-(G)$, equals the minimum weight of a minus dominating function on $G$. In this paper, the following two results are obtained. (1) If $G$ is a bipartite graph of order $n$, then \[ \gamma ^-(G)\ge 4\bigl (\sqrt{n + 1}-1\bigr )-n. \] (2) For any negative integer $k$ and any positive integer $m\ge 3$, there exists a graph $G$ with girth $m$ such that $\gamma ^-(G)\le k$. Therefore, two open problems about minus domination number are solved. (English)
Keyword: minus dominating function
Keyword: minus domination number
MSC: 05C69
idZBL: Zbl 1080.05523
idMR: MR2100001
.
Date available: 2009-09-24T11:18:33Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127937
.
Reference: [1] J. A. Bondy and U. S. R. Murty: Graph Theory with Applications.Macmillan, New York, 1976. MR 0411988
Reference: [2] J. E. Dunbar, W. Goddard, S. T. Hedetniemi, M. A. Henning and A. McRae: The algorithmic complexity of minus domination in graphs.Discrete Appl. Math. 68 (1996), 73–84. MR 1393310, 10.1016/0166-218X(95)00056-W
Reference: [3] J. E. Dunbar, S. T. Hedetniemi, M. A. Henning and A. A. McRae: Minus domination in graphs.Discrete Math. 199 (1999), 35–47. MR 1675909
Reference: [4] J. E. Dunbar, S. T. Hedetniemi, M. A. Henning and A. A. McRae: Minus domination in regular graphs.Discrete Math. 49 (1996), 311–312. MR 1375119
Reference: [5] J. H. Hattingh, M. A. Henning and P. J. Slater: Three-valued neighborhood domination in graphs.Australas. J.  Combin. 9 (1994), 233–242. MR 1271204
Reference: [6] T. W. Haynes, S. T. Hedetniemi and P. J. Slater: Fundamentals of Domination in Graphs.Marcel Dekker, New York, 1998. MR 1605684
Reference: [7] J. Petersen: Die Theorie der regulären Graphs.Acta Math. 15 (1891), 193–220. MR 1554815, 10.1007/BF02392606
Reference: [8] W. T. Tutte: Connectivity in Graphs.University Press, Toronto, 1966. Zbl 0146.45603, MR 0210617
.

Files

Files Size Format View
CzechMathJ_54-2004-4_5.pdf 301.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo