Previous |  Up |  Next

Article

Title: A note on ultrametric matrices (English)
Author: Zhang, Xiao-Dong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 54
Issue: 4
Year: 2004
Pages: 929-940
Summary lang: English
.
Category: math
.
Summary: It is proved in this paper that special generalized ultrametric and special $\mathcal U$ matrices are, in a sense, extremal matrices in the boundary of the set of generalized ultrametric and $ \mathcal U$ matrices, respectively. Moreover, we present a new class of inverse $M$-matrices which generalizes the class of $\mathcal U$ matrices. (English)
Keyword: generalized ultrametric matrix
Keyword: $ \mathcal U$ matrix
Keyword: weighted graph
Keyword: inverse $M$-matrix
MSC: 05C50
MSC: 15A09
MSC: 15A48
MSC: 15A57
idZBL: Zbl 1080.15500
idMR: MR2100005
.
Date available: 2009-09-24T11:18:59Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127941
.
Reference: [1] A. Berman and R. J. Plemmons: Nonnegative Matrices in the Mathematical Sciences.Academic, 1979; SIAM, 1994. MR 1298430
Reference: [2] C. R. Johnson: Inverse $M$-matrices.Linear Algebra Appl. 47 (1982), 159–216. Zbl 0488.15011, MR 0672744
Reference: [3] C. Dellacherie, S. Martínez and J. S. Martín: Ultrametric matrices and induced Markov chains.Adv. in Appl. Math. 17 (1996), 169–183. MR 1390573, 10.1006/aama.1996.0009
Reference: [4] C. Dellacherie, S. Martínez and J. S. Martín: Description of the sub-Markov kernel associated to generalized ultrametric matrices: an algorithmic approach.Linear Algebra Appl. 318 (2000), 1–21. MR 1787220
Reference: [5] M. Fiedler: Some characterizations of symmmetric inverse $M$-matrices.Linear Algebra Appl. 275–276 (1998), 179–187. MR 1628388
Reference: [6] M. Fiedler: Special ultrametric matrices and graphs.SIAM J.  Matrix Anal. Appl. (electronic) 22 (2000), 106–113. Zbl 0967.15013, MR 1779719, 10.1137/S0895479899350988
Reference: [7] M. Fiedler, C  R. Johnson and T. L Markham: Notes on inverse $M$-matrices.Linear Algebra Appl. 91 (1987), 75–81. MR 0888480, 10.1016/0024-3795(87)90061-9
Reference: [8] S. Martínez, G. Michon and J. S. Martín: Inverses of ultrametric matrices are of Stieltjes types.SIAM J. Matrix Anal. Appl. 15 (1994), 98–106. MR 1257619, 10.1137/S0895479891217011
Reference: [9] J. J. McDonald, R. Nabben, M. Neumann, H. Schneider and M. J. Tsatsomeros: Inverse tridiagonal $Z$-matrices.Linear and Multilinear Algebra 45 (1998), 75–97. MR 1665619
Reference: [10] J. J. McDonald, M. Neumann, H. Schneider and M. J. Tsatsomeros: Inverse $M$-matrix inequalities and generalized ultrametric matrices.Linear Algebra Appl. 220 (1995), 329–349. MR 1334583
Reference: [11] R. Nabben: A class of inverse $M$-matrices.Electron. J. Linear Algebra 7 (2000), 53–58. Zbl 0956.15012, MR 1766201
Reference: [12] R. Nabben and R. S. Varga: A linear algebra proof that the inverses of strictly ultrametric matrix is a strictly diagonally dominant are of Stieljes types.SIAM J. Matrix Anal. Appl. 15 (1994), 107–113. MR 1257620, 10.1137/S0895479892228237
Reference: [13] R. Nabben and R. S. Varga: Generalized ultrametric matrices—a class of inverse $M$-matrices.Linear Algebra Appl. 220 (1995), 365–390. MR 1334586
Reference: [14] M. Neumann: A conjecture concerning the Hadamard product of inverse of $M$-matrices.Linear Algebra Appl. 285 (1995), 277–290. MR 1653539
Reference: [15] R. A.  Willoughby: The inverse $M$-matrix problem.Linear Algebra Appl. 18 (1977), 75–94. Zbl 0355.15006, MR 0472874, 10.1016/0024-3795(77)90081-7
.

Files

Files Size Format View
CzechMathJ_54-2004-4_9.pdf 337.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo