Previous |  Up |  Next

Article

Title: Generalized first class selectors for upper semi-continuous set-valued maps in Banach spaces (English)
Author: Hansell, R. W.
Author: Oncina, L.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 1
Year: 2005
Pages: 145-155
Summary lang: English
.
Category: math
.
Summary: In this paper we deal with weakly upper semi-continuous set-valued maps, taking arbitrary non-empty values, from a non-metric domain to a Banach space. We obtain selectors having the point of continuity property relative to the norm topology for a large class of compact spaces as a domain. Exact conditions under which the selector is of the first Borel class are also investigated. (English)
Keyword: measurable selectors
Keyword: upper semi-continuous maps
Keyword: point of continuity property
MSC: 46B22
MSC: 46B99
MSC: 47H04
idZBL: Zbl 1081.46016
idMR: MR2121662
.
Date available: 2009-09-24T11:21:38Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127965
.
Reference: [1] G. Gruenhage: A note on Gul’ko compact spaces.Proc. Amer. Math. Soc. 100 (1987), 371–376. Zbl 0622.54020, MR 0884482
Reference: [2] G. Koumoullis: A generalization of functions of the first class.Topology Appl. 50 (1993), 217–239. Zbl 0788.54036, MR 1227551, 10.1016/0166-8641(93)90022-6
Reference: [3] W. R. Hansell: First class selectors for upper semi-continuous multifunctions.J.  Funct. Anal. 75 (1987), 382–395. Zbl 0644.54014, MR 0916758, 10.1016/0022-1236(87)90102-9
Reference: [4] R. W. Hansell: Descriptive sets and the topology of nonseparable Banach spaces.Serdica Math.  J. 27 (2001), 1–66. Zbl 0982.46012, MR 1828793
Reference: [5] R. W. Hansell: First class functions with values in nonseparable spaces.Constantin Carathéodory: An International Tribute, Vols. I, II, World Sci. Publishing, Teaneck, 1991, pp. 461–475. Zbl 0767.54010, MR 1130849
Reference: [6] R. W. Hansell: Descriptive Topology. Recent Progress in General Topology.M.  Husec and J.  van Mill (eds.), Elsevier Science Publishers, , 1992. MR 1229121
Reference: [7] R. W. Hansell, J. E. Jayne, and M. Talagrand: First class selector for weakly upper semi-continuous multivalued maps in Banach spaces.J.  Reine Angew. Math. 361 (1985), 201–220. MR 0807260
Reference: [8] J. E. Jayne, J. Orihuela, A. J. Pallarés, and G. Vera: $\sigma $-fragmentability of multivalued maps and selection theorems.J.  Funct. Anal. 117 (1993), 243–273. MR 1244937, 10.1006/jfan.1993.1127
Reference: [9] J. E. Jayne, C. A. Rogers: Borel selectors for upper semi-continuous set-valued maps.Acta. Math. 155 (1985), 41–79. MR 0793237, 10.1007/BF02392537
Reference: [10] I. Namioka: Radon-Nikodým compact spaces and fragmentability.Mathematika 34 (1989), 258–281. MR 0933504
Reference: [11] L. Oncina: Descriptive Banach spaces and Eberlein compacta.Doctoral Thesis, Universidad de Murcia, 1999.
Reference: [12] N. K. Ribarska: Internal characterization of fragmentable spaces.Mathematika 34 (1987), 243–257. Zbl 0645.46017, MR 0933503, 10.1112/S0025579300013498
Reference: [13] V. V. Srivatsa: Baire class  1 selectors for upper-semicontinuous set-valued maps.Trans. Amer. Math. Soc. 337 (1993), 609–624. Zbl 0822.54017, MR 1140919
Reference: [14] M. Talagrand: Pettis Integral and Measure Theory.Mem. Amer. Math. Soc. 307, Providence, 1984, pp. 224. Zbl 0582.46049, MR 0756174
.

Files

Files Size Format View
CzechMathJ_55-2005-1_10.pdf 363.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo