Previous |  Up |  Next

Article

Title: Extensions of $GM$-rings (English)
Author: Chen, Huanyin
Author: Chen, Miaosen
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 2
Year: 2005
Pages: 273-281
Summary lang: English
.
Category: math
.
Summary: It is shown that a ring $R$ is a $GM$-ring if and only if there exists a complete orthogonal set $\lbrace e_1,\cdots ,e_n\rbrace $ of idempotents such that all $e_iRe_i$ are $GM$-rings. We also investigate $GM$-rings for Morita contexts, module extensions and power series rings. (English)
Keyword: $GM$-ring
Keyword: module extension
Keyword: power series ring
MSC: 16E50
MSC: 16S50
MSC: 16U60
MSC: 16U99
idZBL: Zbl 1081.16016
idMR: MR2137137
.
Date available: 2009-09-24T11:22:54Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127977
.
Reference: [1] V. P. Camillo and H. P. Yu: Exchange rings, units and idempotents.Comm. Algebra 22 (1994), 4737–4749. MR 1285703, 10.1080/00927879408825098
Reference: [2] H. Chen: Exchange rings with artinian primitive factors.Algebras Represent. Theory 2 (1999), 201–207. Zbl 0960.16009, MR 1702275
Reference: [3] H. Chen: Rings with many idempotents.Internat. J.  Math. Math. Sci. 22 (1999), 547–558. Zbl 0970.16004, MR 1717176, 10.1155/S0161171299225471
Reference: [4] H. Chen: Units, idempotents and stable range conditions.Comm. Algebra 29 (2001), 703–717. Zbl 0989.16007, MR 1841993, 10.1081/AGB-100001535
Reference: [5] H. Chen: Stable ranges for Morita contexts.SEA  Bull. Math. 25 (2001), 209–216. Zbl 0999.16005, MR 1935091, 10.1007/s10012-001-0209-8
Reference: [6] K. R. Goodearl and P. Menal: Stable range one for rings with many units.J.  Pure Appl. Algebra 54 (1988), 261–287. MR 0963548, 10.1016/0022-4049(88)90034-5
Reference: [7] A. Haghany: Hopficity and co-hopficity for Morita contexts.Comm. Algebra 27 (1999), 477–492. Zbl 0921.16002, MR 1668301, 10.1080/00927879908826443
Reference: [8] J. Han and W. K. Nicholson: Extensions of clean rings.Comm. Algebra 29 (2001), 2589–2595. MR 1845131, 10.1081/AGB-100002409
Reference: [9] M. Henriksen: Two classes of rings generated by their units.J.  Algebra 31 (1974), 182–193. Zbl 0285.16009, MR 0349745, 10.1016/0021-8693(74)90013-1
Reference: [10] Y. Hirano: Another triangular matrix ring having Auslander-Gorenstein property.Comm. Algebra 29 (2001), 719–735. Zbl 0992.16013, MR 1841994, 10.1081/AGB-100001536
Reference: [11] P. Menal: On $\pi $-regular rings whose primitive factor rings are artinian.J.  Pure. Appl. Algebra 20 (1981), 71–78. Zbl 0457.16006, MR 0596154, 10.1016/0022-4049(81)90049-9
Reference: [12] W. K. Nicholson: Strongly clean rings and Fitting’s lemma.Comm. Algebra 27 (1999), 3583–3592. Zbl 0946.16007, MR 1699586, 10.1080/00927879908826649
Reference: [13] W. K. Nicholson and K. Varadarjan: Countable linear transformations are clean.Proc. Amer. Math. Soc. 126 (1998), 61–64. MR 1452816, 10.1090/S0002-9939-98-04397-4
Reference: [14] E. Pardo: Comparability, separativity, and exchange rings.Comm. Algebra 24 (1996), 2915–2929. Zbl 0859.16001, MR 1396864, 10.1080/00927879608825721
Reference: [15] T. Wu and W. Tong: Stable range condition and cancellation of modules.Pitman Res. Notes Math. 346 (1996), 98–104. MR 1396566
Reference: [16] H. P. Yu: On the structure of exchange rings.Comm. Algebra 25 (1997), 661–670. Zbl 0873.16007, MR 1428806, 10.1080/00927879708825882
.

Files

Files Size Format View
CzechMathJ_55-2005-2_1.pdf 313.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo