Title:
|
Extensions of $GM$-rings (English) |
Author:
|
Chen, Huanyin |
Author:
|
Chen, Miaosen |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
55 |
Issue:
|
2 |
Year:
|
2005 |
Pages:
|
273-281 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
It is shown that a ring $R$ is a $GM$-ring if and only if there exists a complete orthogonal set $\lbrace e_1,\cdots ,e_n\rbrace $ of idempotents such that all $e_iRe_i$ are $GM$-rings. We also investigate $GM$-rings for Morita contexts, module extensions and power series rings. (English) |
Keyword:
|
$GM$-ring |
Keyword:
|
module extension |
Keyword:
|
power series ring |
MSC:
|
16E50 |
MSC:
|
16S50 |
MSC:
|
16U60 |
MSC:
|
16U99 |
idZBL:
|
Zbl 1081.16016 |
idMR:
|
MR2137137 |
. |
Date available:
|
2009-09-24T11:22:54Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127977 |
. |
Reference:
|
[1] V. P. Camillo and H. P. Yu: Exchange rings, units and idempotents.Comm. Algebra 22 (1994), 4737–4749. MR 1285703, 10.1080/00927879408825098 |
Reference:
|
[2] H. Chen: Exchange rings with artinian primitive factors.Algebras Represent. Theory 2 (1999), 201–207. Zbl 0960.16009, MR 1702275 |
Reference:
|
[3] H. Chen: Rings with many idempotents.Internat. J. Math. Math. Sci. 22 (1999), 547–558. Zbl 0970.16004, MR 1717176, 10.1155/S0161171299225471 |
Reference:
|
[4] H. Chen: Units, idempotents and stable range conditions.Comm. Algebra 29 (2001), 703–717. Zbl 0989.16007, MR 1841993, 10.1081/AGB-100001535 |
Reference:
|
[5] H. Chen: Stable ranges for Morita contexts.SEA Bull. Math. 25 (2001), 209–216. Zbl 0999.16005, MR 1935091, 10.1007/s10012-001-0209-8 |
Reference:
|
[6] K. R. Goodearl and P. Menal: Stable range one for rings with many units.J. Pure Appl. Algebra 54 (1988), 261–287. MR 0963548, 10.1016/0022-4049(88)90034-5 |
Reference:
|
[7] A. Haghany: Hopficity and co-hopficity for Morita contexts.Comm. Algebra 27 (1999), 477–492. Zbl 0921.16002, MR 1668301, 10.1080/00927879908826443 |
Reference:
|
[8] J. Han and W. K. Nicholson: Extensions of clean rings.Comm. Algebra 29 (2001), 2589–2595. MR 1845131, 10.1081/AGB-100002409 |
Reference:
|
[9] M. Henriksen: Two classes of rings generated by their units.J. Algebra 31 (1974), 182–193. Zbl 0285.16009, MR 0349745, 10.1016/0021-8693(74)90013-1 |
Reference:
|
[10] Y. Hirano: Another triangular matrix ring having Auslander-Gorenstein property.Comm. Algebra 29 (2001), 719–735. Zbl 0992.16013, MR 1841994, 10.1081/AGB-100001536 |
Reference:
|
[11] P. Menal: On $\pi $-regular rings whose primitive factor rings are artinian.J. Pure. Appl. Algebra 20 (1981), 71–78. Zbl 0457.16006, MR 0596154, 10.1016/0022-4049(81)90049-9 |
Reference:
|
[12] W. K. Nicholson: Strongly clean rings and Fitting’s lemma.Comm. Algebra 27 (1999), 3583–3592. Zbl 0946.16007, MR 1699586, 10.1080/00927879908826649 |
Reference:
|
[13] W. K. Nicholson and K. Varadarjan: Countable linear transformations are clean.Proc. Amer. Math. Soc. 126 (1998), 61–64. MR 1452816, 10.1090/S0002-9939-98-04397-4 |
Reference:
|
[14] E. Pardo: Comparability, separativity, and exchange rings.Comm. Algebra 24 (1996), 2915–2929. Zbl 0859.16001, MR 1396864, 10.1080/00927879608825721 |
Reference:
|
[15] T. Wu and W. Tong: Stable range condition and cancellation of modules.Pitman Res. Notes Math. 346 (1996), 98–104. MR 1396566 |
Reference:
|
[16] H. P. Yu: On the structure of exchange rings.Comm. Algebra 25 (1997), 661–670. Zbl 0873.16007, MR 1428806, 10.1080/00927879708825882 |
. |