Previous |  Up |  Next

Article

Title: On convergence theory in fuzzy topological spaces and its applications (English)
Author: Nouh, Ali Ahmed
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 2
Year: 2005
Pages: 295-316
Summary lang: English
.
Category: math
.
Summary: In this paper we introduce and study new concepts of convergence and adherent points for fuzzy filters and fuzzy nets in the light of the $Q$-relation and the $Q$-neighborhood of fuzzy points due to Pu and Liu [28]. As applications of these concepts we give several new characterizations of the closure of fuzzy sets, fuzzy Hausdorff spaces, fuzzy continuous mappings and strong $Q$-compactness. We show that there is a relation between the convergence of fuzzy filters and the convergence of fuzzy nets similar to the one which exists between the convergence of filters and the convergence of nets in topological spaces. (English)
Keyword: fuzzy points
Keyword: $Q$-neighborhoods
Keyword: fuzzy filters
Keyword: fuzzy nets
Keyword: limit
Keyword: adherent and $Q$-adherent points of fuzzy filters and fuzzy nets
Keyword: fuzzy continuity
Keyword: strong $Q$-compactness
MSC: 54A20
MSC: 54A40
MSC: 54C08
MSC: 54H12
idZBL: Zbl 1081.54007
idMR: MR2137139
.
Date available: 2009-09-24T11:23:07Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127979
.
Reference: [1] R. G.  Bartle: Nets and filters in topology.Amer. Math. Monthly 62 (1955), 551–557. Zbl 0065.37901, MR 0073153, 10.2307/2307247
Reference: [2] R.  Bělohlávek: Fuzzy Relational Systems: Fundations and Principles.Kluwer, New York, 2002.
Reference: [3] G.  Birkhoff: Moore-Smith convergence in general topology.Ann. Math. 38 (1937), 39–56. Zbl 0016.08502, MR 1503323, 10.2307/1968508
Reference: [4] N.  Bourbaki: Topologie Generale, Ch. 1.Actualites Sci. Indust., Paris 858, 1940.
Reference: [5] H.  Cartan: Théorie des filtres.C.  R.  Acad. Sci. Paris 205 (1937), 595–598. Zbl 0017.24305
Reference: [6] C. L. Chang: Fuzzy topological spaces.J.  Math. Anal. Appl. 24 (1968), 182–190. Zbl 0167.51001, MR 0236859, 10.1016/0022-247X(68)90057-7
Reference: [7] Hu Cheng-Ming: Theory of convergence in fuzzy topological spaces.J.  Fuzzy Math. 1 (1993), 1–12. MR 1230301
Reference: [8] A.  Choubey and A. K.  Srivastava: On $\alpha $-compact fuzzy topological spaces.J.  Fuzzy Math. 1 (1993), 321–326. MR 1230323
Reference: [9] P.  Eklund and W.  Gähler: Fuzzy filter functors and convergence.Applictions of Category Theory to Fuzzy Subsets, Kluwer Academic Publishers, Dordrecht-Boston-London, 1992, pp. 109–136. MR 1154570
Reference: [10] W.  Gähler: Convergence.Fuzzy Sets and Systems 73 (1995), 97–129.
Reference: [11] W.  Gähler: The general fuzzy filter approach to fuzzy topology. Part I.Fuzzy Sets and Systems 76 (1995), 205–224. MR 1365392
Reference: [12] W.  Gähler: The general fuzzy filter approach to fuzzy topology. Part II.Fuzzy Sets and Systems 76 (1995), 225–246. 10.1016/0165-0114(95)00057-R
Reference: [13] Wang Guojun: A new fuzzy compactness defined by fuzzy nets.J.  Math. Anal. Appl. 94 (1983), 1–23. Zbl 0512.54006, MR 0701446, 10.1016/0022-247X(83)90002-1
Reference: [14] A.  Kandil, E.  Kerre, A.  Nouh and M. E.  El-Shafei: Generalized mappings between fuzzy topological spaces.Math. Pannon. 31 (1992), 59–71. MR 1240878
Reference: [15] J. L.  Kelley: General Topology.Van Nostrand, New York, 1955. Zbl 0066.16604, MR 0070144
Reference: [16] E. E.  Kerre, A. A.  Nouh and A.  Kandil: Generalized compactness in fuzzy topological spaces.Math. Vesnik 43 (1991), 29–40. MR 1210258
Reference: [17] E. E.  Kerre, A. A.  Nouh and A.  Kandil: Operations on the class of all fuzzy sets on a universe endowed with a fuzzy topology.J.  Math. Anal. Appl. 180 (1993), 325–341. MR 1251863, 10.1006/jmaa.1993.1404
Reference: [18] G. J.  Klir and B.  Yuah: Fuzzy Sets and Fuzzy Logic: Theory and Applications.Perentice Hall, , 1995, pp. 574. MR 1329731
Reference: [19] R.  Lowen: Initial and final fuzzy topologies and the fuzzy Tychonoff theorem.J.  Math. Anal. Appl. 58 (1977), 11–21. Zbl 0347.54002, MR 0440483, 10.1016/0022-247X(77)90223-2
Reference: [20] R.  Lowen: Convergence in fuzzy topological spaces.Gen. Topol. Appl. 10 (1979), 147–160. Zbl 0409.54008, MR 0527841, 10.1016/0016-660X(79)90004-7
Reference: [21] R.  Lowen: The relation between filter and net convergence in fuzzy topological spaces.Fuzzy Math. 3 (1983), 41–52. Zbl 0569.54007, MR 0743505
Reference: [22] M.  Macho Stadler and M. A.  De Prada Vicente: Fuzzy $t$-net theory.Fuzzy Sets and Systems 37 (1990), 225–235. MR 1074667, 10.1016/0165-0114(90)90045-8
Reference: [23] M.  Macho Stadler and M. A.  De Prada Vicente: On $N$-convergence of fuzzy nets.Fuzzy Sets and Systems 51 (1992), 203–217. MR 1188312, 10.1016/0165-0114(92)90193-8
Reference: [24] M.  Macho Stadler and M. A.  De Prada Vicente: $t^*$-fuzzy topological concepts.Portugaliae Math. 49 (1992), 85–108. MR 1165924
Reference: [25] E. H.  Moore and H. L.  Smith: A general theory of limits.Amer. J.  Math. 44 (1922), 102–121. MR 1506463, 10.2307/2370388
Reference: [26] M. A.  De Prada Vicente and M. S.  Aranguren: Fuzzy filters.J. Math. Anal. Appl. 129 (1988), 560–568. MR 0924310, 10.1016/0022-247X(88)90271-5
Reference: [27] M. A.  De Prada Vicente and M. M.  Stadler: $t$-prefilter theory.Fuzzy Sets and Systems 38 (1990), 115–124. MR 1078725
Reference: [28] Pu Pao-Ming and Liu Ying-Ming: Fuzzy topology  I.J.  Math. Anal. Appl. 76 (1980), 571–599. MR 0587361
Reference: [29] Pu Pao-Ming and Liu Ying-Ming: Fuzzy topology  II.J.  Math. Anal. Appl. 77 (1980), 20–37. MR 0591259
Reference: [30] R. V.  Sarma and N.  Ajmal: Fuzzy nets and their application.Fuzzy Sets and Systems 51 (1992), 41–51. MR 1187370, 10.1016/0165-0114(92)90074-E
Reference: [31] Lee Bu Yong, Park Jin Han and Park Bae Hun: Fuzzy convergence structures.Fuzzy Sets and Systems 56 (1993), 309–315. MR 1227900, 10.1016/0165-0114(93)90211-Y
Reference: [32] L. A.  Zadeh: Fuzzy sets.Information and Control 8 (1965), 338–353. Zbl 0139.24606, MR 0219427, 10.1016/S0019-9958(65)90241-X
Reference: [33] Li Zhongfu: Compactness in fuzzy topological spaces.Kuxue Tongbao 29 (1984), 582–585. Zbl 0576.54008, MR 0834292
.

Files

Files Size Format View
CzechMathJ_55-2005-2_3.pdf 417.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo