Previous |  Up |  Next

Article

Title: Boundedness of the solution of the third problem for the Laplace equation (English)
Author: Medková, Dagmar
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 2
Year: 2005
Pages: 317-340
Summary lang: English
.
Category: math
.
Summary: A necessary and sufficient condition for the boundedness of a solution of the third problem for the Laplace equation is given. As an application a similar result is given for the third problem for the Poisson equation on domains with Lipschitz boundary. (English)
Keyword: third problem
Keyword: Laplace equation
MSC: 31B10
MSC: 35B45
MSC: 35B65
MSC: 35J05
MSC: 35J25
idZBL: Zbl 1081.35013
idMR: MR2137140
.
Date available: 2009-09-24T11:23:13Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127980
.
Reference: [1] T. S.  Angell, R. E.  Kleinman and J.  Král: Layer potentials on boundaries with corners and edges.Čas. pěst. mat. 113 (1988), 387–402. MR 0981880
Reference: [2] M. Brelot: Éléments de la théorie classique du potentiel.Centre de documentation universitaire, Paris, 1961. MR 0106366
Reference: [3] Yu. D.  Burago and V. G.  Maz’ya: Potential theory and function theory for irregular regions.Zapiski Naučnyh Seminarov LOMI 3 (1967), 1–152. (Russian)
Reference: [4] H.  Federer and W. P.  Ziemer: The Lebesgue set of a function whose partial derivatives are $p$-th power summable.Indiana Univ. Math.  J. 22 (1972), 139–158. MR 0435361
Reference: [5] W. H.  Fleming: Functions whose partial derivatives are measures.Illinois J.  Math. 4 (1960), 452–478. Zbl 0151.05402, MR 0130338, 10.1215/ijm/1255456061
Reference: [6] L. E.  Fraenkel: Introduction to Maximum Principles and Symmetry in Elliptic Problems. Cambridge Tracts in Mathematics  128.Cambridge University Press, Cambridge, 2000. MR 1751289
Reference: [7] N. V.  Grachev, and V. G.  Maz’ya: On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries.Vest. Leningrad. Univ. 19 (1986), 60–64. MR 0880678
Reference: [8] N. V.  Grachev and V. G.  Maz’ya: Invertibility of Boundary Integral Operators of Elasticity on Surfaces with Conic Points. Report LiTH-MAT-R-91-50.Linköping Univ., Linköping.
Reference: [9] N. V.  Grachev and V. G.  Maz’ya: Solvability of a Boundary Integral Equation on a Polyhedron. Report LiTH-MAT-R-91-50.Linköping Univ., Linköping.
Reference: [10] N. V.  Grachev and V. G.  Maz’ya: Estimates for Kernels of the Inverse Operators of the Integral Equations of Elasticity on Surfaces with Conic Points. Report LiTH-MAT-R-91-06.Linköping Univ., Linköping.
Reference: [11] L. L.  Helms: Introduction to Potential Theory. Pure and Applied Mathematics  22.John Wiley & Sons, , 1969. MR 0261018
Reference: [12] J.  Král: Integral Operators in Potential Theory. Lecture Notes in Mathematics  823.Springer-Verlag, Berlin, 1980. MR 0590244
Reference: [13] J.  Král: The Fredholm method in potential theory.Trans. Amer. Math. Soc. 125 (1966), 511–547. MR 0209503, 10.2307/1994580
Reference: [14] J.  Král and W. L.  Wendland: Some examples concerning applicability of the Fredholm-Radon method in potential theory.Aplikace matematiky 31 (1986), 293–308. MR 0854323
Reference: [15] N. L.  Landkof: Fundamentals of Modern Potential Theory.Izdat. Nauka, Moscow, 1966. (Russian) MR 0214795
Reference: [16] D.  Medková: The third boundary value problem in potential theory for domains with a piecewise smooth boundary.Czechoslovak Math.  J. 47 (1997), 651–679. MR 1479311, 10.1023/A:1022818618177
Reference: [17] D.  Medková: Solution of the Robin problem for the Laplace equation.Appl. Math. 43 (1998), 133–155. MR 1609158, 10.1023/A:1023267018214
Reference: [18] D.  Medková: Solution of the Neumann problem for the Laplace equation.Czechoslovak Math.  J. 48 (1998), 768–784. 10.1023/A:1022447908645
Reference: [19] D.  Medková: Continuous extendibility of solutions of the Neumann problem for the Laplace equation.Czechoslovak Math.  J 53 (2003), 377–395. MR 1983459, 10.1023/A:1026239404667
Reference: [20] D.  Medková: Continuous extendibility of solutions of the third problem for the Laplace equation.Czechoslovak Math.  J 53 (2003), 669–688. MR 2000062, 10.1023/B:CMAJ.0000024512.23001.f3
Reference: [21] D.  Medková: Solution of the Dirichlet problem for the Laplace equation.Appl. Math. 44 (1999), 143–168. 10.1023/A:1022209421576
Reference: [22] J.  Nečas: Les méthodes directes en théorie des équations élliptiques.Academia, Prague, 1967. MR 0227584
Reference: [23] I.  Netuka: Fredholm radius of a potential theoretic operator for convex sets.Čas. pěst. mat. 100 (1975), 374–383. Zbl 0314.31006, MR 0419794
Reference: [24] I.  Netuka: Generalized Robin problem in potential theory.Czechoslovak Math.  J. 22(97) (1972), 312–324. Zbl 0241.31008, MR 0294673
Reference: [25] I.  Netuka: An operator connected with the third boundary value problem in potential theory.Czechoslovak Math.  J. 22(97) (1972), 462–489. Zbl 0241.31009, MR 0316733
Reference: [26] I.  Netuka: The third boundary value problem in potential theory.Czechoslovak Math.  J. 2(97) (1972), 554–580. Zbl 0242.31007, MR 0313528
Reference: [27] A.  Rathsfeld: The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method.Applicable Analysis 45 (1992), 135–177. MR 1293594, 10.1080/00036819208840093
Reference: [28] A.  Rathsfeld: The invertibility of the double layer potential operator in the space of continuous functions defined over a polyhedron. The panel method. Erratum.Applicable Analysis 56 (1995), 109–115. Zbl 0921.31004, MR 1378015, 10.1080/00036819508840313
Reference: [29] M.  Schechter: Principles of Functional Analysis.Academic Press, , 1973. MR 0445263
Reference: [30] W. P. Ziemer: Weakly Differentiable Functions.Springer-Verlag, , 1989. Zbl 0692.46022, MR 1014685
.

Files

Files Size Format View
CzechMathJ_55-2005-2_4.pdf 433.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo