[1] T. S. Angell, R. E. Kleinman and J. Král:
Layer potentials on boundaries with corners and edges. Čas. pěst. mat. 113 (1988), 387–402.
MR 0981880
[2] M. Brelot:
Éléments de la théorie classique du potentiel. Centre de documentation universitaire, Paris, 1961.
MR 0106366
[3] Yu. D. Burago and V. G. Maz’ya: Potential theory and function theory for irregular regions. Zapiski Naučnyh Seminarov LOMI 3 (1967), 1–152. (Russian)
[4] H. Federer and W. P. Ziemer:
The Lebesgue set of a function whose partial derivatives are $p$-th power summable. Indiana Univ. Math. J. 22 (1972), 139–158.
MR 0435361
[6] L. E. Fraenkel:
Introduction to Maximum Principles and Symmetry in Elliptic Problems. Cambridge Tracts in Mathematics 128. Cambridge University Press, Cambridge, 2000.
MR 1751289
[7] N. V. Grachev, and V. G. Maz’ya:
On the Fredholm radius for operators of the double layer potential type on piecewise smooth boundaries. Vest. Leningrad. Univ. 19 (1986), 60–64.
MR 0880678
[8] N. V. Grachev and V. G. Maz’ya: Invertibility of Boundary Integral Operators of Elasticity on Surfaces with Conic Points. Report LiTH-MAT-R-91-50. Linköping Univ., Linköping.
[9] N. V. Grachev and V. G. Maz’ya: Solvability of a Boundary Integral Equation on a Polyhedron. Report LiTH-MAT-R-91-50. Linköping Univ., Linköping.
[10] N. V. Grachev and V. G. Maz’ya: Estimates for Kernels of the Inverse Operators of the Integral Equations of Elasticity on Surfaces with Conic Points. Report LiTH-MAT-R-91-06. Linköping Univ., Linköping.
[11] L. L. Helms:
Introduction to Potential Theory. Pure and Applied Mathematics 22. John Wiley & Sons, , 1969.
MR 0261018
[12] J. Král:
Integral Operators in Potential Theory. Lecture Notes in Mathematics 823. Springer-Verlag, Berlin, 1980.
MR 0590244
[14] J. Král and W. L. Wendland:
Some examples concerning applicability of the Fredholm-Radon method in potential theory. Aplikace matematiky 31 (1986), 293–308.
MR 0854323
[15] N. L. Landkof:
Fundamentals of Modern Potential Theory. Izdat. Nauka, Moscow, 1966. (Russian)
MR 0214795
[16] D. Medková:
The third boundary value problem in potential theory for domains with a piecewise smooth boundary. Czechoslovak Math. J. 47 (1997), 651–679.
DOI 10.1023/A:1022818618177 |
MR 1479311
[18] D. Medková:
Solution of the Neumann problem for the Laplace equation. Czechoslovak Math. J. 48 (1998), 768–784.
DOI 10.1023/A:1022447908645
[19] D. Medková:
Continuous extendibility of solutions of the Neumann problem for the Laplace equation. Czechoslovak Math. J 53 (2003), 377–395.
DOI 10.1023/A:1026239404667 |
MR 1983459
[21] D. Medková:
Solution of the Dirichlet problem for the Laplace equation. Appl. Math. 44 (1999), 143–168.
DOI 10.1023/A:1022209421576
[22] J. Nečas:
Les méthodes directes en théorie des équations élliptiques. Academia, Prague, 1967.
MR 0227584
[23] I. Netuka:
Fredholm radius of a potential theoretic operator for convex sets. Čas. pěst. mat. 100 (1975), 374–383.
MR 0419794 |
Zbl 0314.31006
[24] I. Netuka:
Generalized Robin problem in potential theory. Czechoslovak Math. J. 22(97) (1972), 312–324.
MR 0294673 |
Zbl 0241.31008
[25] I. Netuka:
An operator connected with the third boundary value problem in potential theory. Czechoslovak Math. J. 22(97) (1972), 462–489.
MR 0316733 |
Zbl 0241.31009
[26] I. Netuka:
The third boundary value problem in potential theory. Czechoslovak Math. J. 2(97) (1972), 554–580.
MR 0313528 |
Zbl 0242.31007
[27] A. Rathsfeld:
The invertibility of the double layer potential in the space of continuous functions defined on a polyhedron. The panel method. Applicable Analysis 45 (1992), 135–177.
DOI 10.1080/00036819208840093 |
MR 1293594
[28] A. Rathsfeld:
The invertibility of the double layer potential operator in the space of continuous functions defined over a polyhedron. The panel method. Erratum. Applicable Analysis 56 (1995), 109–115.
DOI 10.1080/00036819508840313 |
MR 1378015 |
Zbl 0921.31004
[29] M. Schechter:
Principles of Functional Analysis. Academic Press, , 1973.
MR 0445263