Previous |  Up |  Next

Article

Title: Remarks on restrained domination and total restrained domination in graphs (English)
Author: Zelinka, Bohdan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 2
Year: 2005
Pages: 393-396
Summary lang: English
.
Category: math
.
Summary: The restrained domination number $\gamma ^r (G)$ and the total restrained domination number $\gamma ^r_t (G)$ of a graph $G$ were introduced recently by various authors as certain variants of the domination number $\gamma (G)$ of $(G)$. A well-known numerical invariant of a graph is the domatic number $d (G)$ which is in a certain way related (and may be called dual) to $\gamma (G)$. The paper tries to define analogous concepts also for the restrained domination and the total restrained domination and discusses the sense of such new definitions. (English)
Keyword: domination number
Keyword: domatic number
Keyword: total domination number
Keyword: total domatic number
Keyword: restrained domination number
Keyword: restrained domatic number
Keyword: total restrained domination number
Keyword: total restrained domatic number
MSC: 05C35
MSC: 05C69
idZBL: Zbl 1081.05050
idMR: MR2137145
.
Date available: 2009-09-24T11:23:45Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127985
.
Reference: [1] Chen  Xue-gang, Sun  Liung and Ma  De-xiang: On total restrained domination in graphs.Czechoslovak Math.  J. 55(130) (2005), 165–173. MR 2121664, 10.1007/s10587-005-0012-2
Reference: [2] E. J.  Cockayne and S.  T.  Hedetniemi: Towards a theory of domination in graphs.Networks 7 (1977), 247–261. MR 0483788, 10.1002/net.3230070305
Reference: [3] E. V.  Cockxne, R.  M.  Dawes and S.  T.  Hedetniemi: Total domination in graphs.Networks 10 (1980), 211–219. MR 0584887, 10.1002/net.3230100304
Reference: [4] G. S.  Domke, J. H. Hattingh et al.: Restrained domination in graphs.Discrete Math. 203 (1999), 61–69. MR 1696234, 10.1016/S0012-365X(99)00016-3
Reference: [5] T.  W.  Haynes, S.  T.  Hedetniemi and P.  J.  Slater: Fundamentals of Domination in Graphs.Marcel Dekker Inc., New York-Basel-Hong Kong, 1998. MR 1605684
Reference: [6] M.  A.  Henning: Graphs with large restrained domination number.Discrete Math. 197/198 (1999), 415–429. Zbl 0932.05070, MR 1674878
.

Files

Files Size Format View
CzechMathJ_55-2005-2_9.pdf 256.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo