Title:
|
On nonregular ideals and $z^\circ$-ideals in $C(X)$ (English) |
Author:
|
Azarpanah, F. |
Author:
|
Karavan, M. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
55 |
Issue:
|
2 |
Year:
|
2005 |
Pages:
|
397-407 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The spaces $X$ in which every prime $z^\circ $-ideal of $C(X)$ is either minimal or maximal are characterized. By this characterization, it turns out that for a large class of topological spaces $X$, such as metric spaces, basically disconnected spaces and one-point compactifications of discrete spaces, every prime $z^\circ $-ideal in $C(X)$ is either minimal or maximal. We will also answer the following questions: When is every nonregular prime ideal in $C(X)$ a $z^\circ $-ideal? When is every nonregular (prime) $z$-ideal in $C(X)$ a $z^\circ $-ideal? For instance, we show that every nonregular prime ideal of $C(X)$ is a $z^\circ $-ideal if and only if $X$ is a $\partial $-space (a space in which the boundary of any zeroset is contained in a zeroset with empty interior). (English) |
Keyword:
|
$z^\circ $-ideal |
Keyword:
|
prime $z$-ideal |
Keyword:
|
nonregular ideal |
Keyword:
|
almost ${P}$-space |
Keyword:
|
$\partial $-space |
Keyword:
|
$m$-space |
MSC:
|
54C40 |
idZBL:
|
Zbl 1081.54013 |
idMR:
|
MR2137146 |
. |
Date available:
|
2009-09-24T11:23:52Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127986 |
. |
Reference:
|
[1] M. F. Atiyah and I. G. Macdonald: Introduction to Commutative Algebra.Addison-Wesly, Reading, 1969. |
Reference:
|
[2] F. Azarpanah: On almost ${P}$-spaces.Far East J. Math. Sci, Special volume (2000), 121–132. Zbl 0954.54006, MR 1761076 |
Reference:
|
[3] F. Azarpanah, O. A. S. Karamzadeh and A. Rezai Aliabad: On $z^\circ $-ideals in $C(X)$.Fund. Math. 160 (1999), 15–25. MR 1694400 |
Reference:
|
[4] F. Azarpanah, O. A. S. Karamzadeh and A. Rezai Aliabad: On ideals consisting entirely of zero divisors.Comm. Algebra 28 (2000), 1061–1073. MR 1736781, 10.1080/00927870008826878 |
Reference:
|
[5] F. Dashiel, A. Hager and M. Henriksen: Order-Cauchy completions and vector lattices of continuous functions.Canad. J. Math. XXXII (1980), 657–685. MR 0586984, 10.4153/CJM-1980-052-0 |
Reference:
|
[6] R. Engelking: General Topology.PWN-Polish Scientific Publishers, Warszawa, 1977. Zbl 0373.54002, MR 0500780 |
Reference:
|
[7] L. Gillman and M. Jerison: Rings of Continuous Functions.Springer-Verlag, New York-Heidelberg-Berlin, 1976. MR 0407579 |
Reference:
|
[8] M. Henriksen and M. Jerison: The space of minimal prime ideals of a commutative ring.Trans. Amer. Math. Soc. 115 (1965), 110–130. MR 0194880, 10.1090/S0002-9947-1965-0194880-9 |
Reference:
|
[9] M. Henriksen, J. Martinz and R. G. Woods: Spaces $X$ in which all prime $z$-ideals of $C(X)$ are minimal or maximal.International Conference on Applicable General Topology, Ankara, , , 2001. MR 2026163 |
Reference:
|
[10] R. Levy: Almost ${P}$-spaces.Canad. J. Math. 2 (1977), 284–288. Zbl 0342.54032, MR 0464203, 10.4153/CJM-1977-030-7 |
Reference:
|
[11] M. A. Mulero: Algebraic properties of rings of continuous functions.Fund. Math. 149 (1996), 55–66. Zbl 0840.54020, MR 1372357 |
Reference:
|
[12] A. I. Veksler: $P^{\prime }$-points, $P^{\prime }$-sets, ${P}^{\prime }$-spaces. A new class of order-continuous measures and functionals.Sov. Math. Dokl. 14 (1973), 1445–1450. Zbl 0291.54046, MR 0341447 |
. |