Previous |  Up |  Next

Article

Title: Unique $a$-closure for some $\ell$-groups of rational valued functions (English)
Author: Hager, Anthony W.
Author: Kimber, Chawne M.
Author: McGovern, Warren W.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 2
Year: 2005
Pages: 409-421
Summary lang: English
.
Category: math
.
Summary: Usually, an abelian $\ell $-group, even an archimedean $\ell $-group, has a relatively large infinity of distinct $a$-closures. Here, we find a reasonably large class with unique and perfectly describable $a$-closure, the class of archimedean $\ell $-groups with weak unit which are “$\mathbb Q$-convex”. ($\mathbb Q$ is the group of rationals.) Any $C(X,\mathbb Q)$ is $\mathbb Q$-convex and its unique $a$-closure is the Alexandroff algebra of functions on $X$ defined from the clopen sets; this is sometimes $C(X)$. (English)
Keyword: archimedean lattice-ordered group
Keyword: $a$-closure
Keyword: rational-valued functions
Keyword: zero-dimensional space
MSC: 06F20
MSC: 06F25
MSC: 20F60
MSC: 54C30
MSC: 54F65
idZBL: Zbl 1081.06020
idMR: MR2137147
.
Date available: 2009-09-24T11:23:58Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/127987
.
Reference: [1] M. Anderson and T. Feil: Lattice-Ordered Groups.Reidel, Dordrecht, 1989. MR 0937703
Reference: [2] E. Aron and A. Hager: Convex vector lattices and $\ell $-algebras.Topology Appl. 12 (1981), 1–10. MR 0600458, 10.1016/0166-8641(81)90024-9
Reference: [3] A. Bigard, K. Keimel and S. Wolfenstein: Groupes et anneaux reticules.Springer-Verlag, Berlin-Heidelberg-New York, 1977. MR 0552653
Reference: [4] P. Conrad: Archimedean extensions of lattice-ordered groups.J. Indian Math. Soc. 30 (1966), 131–160. Zbl 0168.27702, MR 0224519
Reference: [5] P. Conrad: Epi-archimedean groups.Czechoslovak. Math.  J. 24(99) (1974), 192–218. Zbl 0319.06009, MR 0347701
Reference: [6] P. F. Conrad, M. R. Darnel and D. G. Nelson: Valuations of lattice-ordered groups.J. Algebra 192 (1997), 380–411. MR 1449966
Reference: [7] M. Darnel: Theory of Lattice-Ordered Groups. Pure and Applied Mathematics, Vol.  187.Dekker, New York, 1995. MR 1304052
Reference: [8] R. Engelking: General Topology.Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [9] L. Gillman and M. Jerison: Rings of Continuous Functions.D.  Van Nostrand Publ., , 1960. MR 0116199
Reference: [10] A. Hager: Cozero fields.Confer. Sem. Mat. Univ. Bari. 175 (1980), 1–23. Zbl 0486.54019, MR 0618363
Reference: [11] A. Hager: On inverse-closed subalgebras of  $C(X)$.Proc. London Math. Soc. 3 (1969), 233–257. Zbl 0169.54005, MR 0244948
Reference: [12] A. Hager: Real-valued functions on Alexandroff (zero-set) spaces.Comm. Math. Univ. Carolin. 16 (1975), 755–769. Zbl 0312.54022, MR 0394547
Reference: [13] A. Hager and C. Kimber: Some examples of hyperarchimedean lattice-ordered groups.Fund. Math. 182 (2004), 107–122. MR 2100062, 10.4064/fm182-2-2
Reference: [14] A. Hager, C. Kimber and W. McGovern: Least integer closed groups.Ordered Alg. Structure (2002), 245–260. MR 2083043
Reference: [15] A. W. Hager and J. Martinez: Singular archimedean lattice-ordered groups.Algebra Univ. 40 (1998), 119–147. MR 1651866, 10.1007/s000120050086
Reference: [16] A. Hager and L. Robertson: Representing and ringifying a Riesz space.Sympos. Math. 21 (1977), 411–431. MR 0482728
Reference: [17] M. Henriksen and D. Johnson: On the structure of a class of archimedean lattice-ordered algebras.Fund. Math. 50 (1961), 73–94. MR 0133698, 10.4064/fm-50-1-73-94
Reference: [18] M. Henriksen, J. Isbell and D. Johnson: Residue class fields of lattice-ordered algebras.Fund. Math. 50 (1961), 107–117. MR 0133350, 10.4064/fm-50-2-107-117
Reference: [19] C. Kimber and W. McGovern: Bounded away lattice-ordered groups.Manuscript, 1998.
Reference: [20] J. R. Porter and R. G. Woods: Extensions and Absolutes of Hausdorff Spaces.Springer-Verlag, , 1988. MR 0918341
Reference: [21] K. Yosida: On the representation of the vector lattice.Proc. Imp. Acad. Tokyo 18 (1942), 339–343. Zbl 0063.09070, MR 0015378
.

Files

Files Size Format View
CzechMathJ_55-2005-2_11.pdf 402.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo