Title:
|
Unique $a$-closure for some $\ell$-groups of rational valued functions (English) |
Author:
|
Hager, Anthony W. |
Author:
|
Kimber, Chawne M. |
Author:
|
McGovern, Warren W. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
55 |
Issue:
|
2 |
Year:
|
2005 |
Pages:
|
409-421 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Usually, an abelian $\ell $-group, even an archimedean $\ell $-group, has a relatively large infinity of distinct $a$-closures. Here, we find a reasonably large class with unique and perfectly describable $a$-closure, the class of archimedean $\ell $-groups with weak unit which are “$\mathbb Q$-convex”. ($\mathbb Q$ is the group of rationals.) Any $C(X,\mathbb Q)$ is $\mathbb Q$-convex and its unique $a$-closure is the Alexandroff algebra of functions on $X$ defined from the clopen sets; this is sometimes $C(X)$. (English) |
Keyword:
|
archimedean lattice-ordered group |
Keyword:
|
$a$-closure |
Keyword:
|
rational-valued functions |
Keyword:
|
zero-dimensional space |
MSC:
|
06F20 |
MSC:
|
06F25 |
MSC:
|
20F60 |
MSC:
|
54C30 |
MSC:
|
54F65 |
idZBL:
|
Zbl 1081.06020 |
idMR:
|
MR2137147 |
. |
Date available:
|
2009-09-24T11:23:58Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/127987 |
. |
Reference:
|
[1] M. Anderson and T. Feil: Lattice-Ordered Groups.Reidel, Dordrecht, 1989. MR 0937703 |
Reference:
|
[2] E. Aron and A. Hager: Convex vector lattices and $\ell $-algebras.Topology Appl. 12 (1981), 1–10. MR 0600458, 10.1016/0166-8641(81)90024-9 |
Reference:
|
[3] A. Bigard, K. Keimel and S. Wolfenstein: Groupes et anneaux reticules.Springer-Verlag, Berlin-Heidelberg-New York, 1977. MR 0552653 |
Reference:
|
[4] P. Conrad: Archimedean extensions of lattice-ordered groups.J. Indian Math. Soc. 30 (1966), 131–160. Zbl 0168.27702, MR 0224519 |
Reference:
|
[5] P. Conrad: Epi-archimedean groups.Czechoslovak. Math. J. 24(99) (1974), 192–218. Zbl 0319.06009, MR 0347701 |
Reference:
|
[6] P. F. Conrad, M. R. Darnel and D. G. Nelson: Valuations of lattice-ordered groups.J. Algebra 192 (1997), 380–411. MR 1449966 |
Reference:
|
[7] M. Darnel: Theory of Lattice-Ordered Groups. Pure and Applied Mathematics, Vol. 187.Dekker, New York, 1995. MR 1304052 |
Reference:
|
[8] R. Engelking: General Topology.Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[9] L. Gillman and M. Jerison: Rings of Continuous Functions.D. Van Nostrand Publ., , 1960. MR 0116199 |
Reference:
|
[10] A. Hager: Cozero fields.Confer. Sem. Mat. Univ. Bari. 175 (1980), 1–23. Zbl 0486.54019, MR 0618363 |
Reference:
|
[11] A. Hager: On inverse-closed subalgebras of $C(X)$.Proc. London Math. Soc. 3 (1969), 233–257. Zbl 0169.54005, MR 0244948 |
Reference:
|
[12] A. Hager: Real-valued functions on Alexandroff (zero-set) spaces.Comm. Math. Univ. Carolin. 16 (1975), 755–769. Zbl 0312.54022, MR 0394547 |
Reference:
|
[13] A. Hager and C. Kimber: Some examples of hyperarchimedean lattice-ordered groups.Fund. Math. 182 (2004), 107–122. MR 2100062, 10.4064/fm182-2-2 |
Reference:
|
[14] A. Hager, C. Kimber and W. McGovern: Least integer closed groups.Ordered Alg. Structure (2002), 245–260. MR 2083043 |
Reference:
|
[15] A. W. Hager and J. Martinez: Singular archimedean lattice-ordered groups.Algebra Univ. 40 (1998), 119–147. MR 1651866, 10.1007/s000120050086 |
Reference:
|
[16] A. Hager and L. Robertson: Representing and ringifying a Riesz space.Sympos. Math. 21 (1977), 411–431. MR 0482728 |
Reference:
|
[17] M. Henriksen and D. Johnson: On the structure of a class of archimedean lattice-ordered algebras.Fund. Math. 50 (1961), 73–94. MR 0133698, 10.4064/fm-50-1-73-94 |
Reference:
|
[18] M. Henriksen, J. Isbell and D. Johnson: Residue class fields of lattice-ordered algebras.Fund. Math. 50 (1961), 107–117. MR 0133350, 10.4064/fm-50-2-107-117 |
Reference:
|
[19] C. Kimber and W. McGovern: Bounded away lattice-ordered groups.Manuscript, 1998. |
Reference:
|
[20] J. R. Porter and R. G. Woods: Extensions and Absolutes of Hausdorff Spaces.Springer-Verlag, , 1988. MR 0918341 |
Reference:
|
[21] K. Yosida: On the representation of the vector lattice.Proc. Imp. Acad. Tokyo 18 (1942), 339–343. Zbl 0063.09070, MR 0015378 |
. |