Previous |  Up |  Next

Article

Title: A note on a class of factorized $p$-groups (English)
Author: Jabara, Enrico
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 4
Year: 2005
Pages: 993-996
Summary lang: English
.
Category: math
.
Summary: In this note we study finite $p$-groups $G=AB$ admitting a factorization by an Abelian subgroup $A$ and a subgroup $B$. As a consequence of our results we prove that if $B$ contains an Abelian subgroup of index $p^{n-1}$ then $G$ has derived length at most $2n$. (English)
Keyword: factorizable groups
Keyword: products of subgroups
Keyword: $p$-groups
MSC: 20D15
MSC: 20D40
idZBL: Zbl 1081.20034
idMR: MR2184379
.
Date available: 2009-09-24T11:29:41Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128040
.
Reference: [1] B.  Amberg, S. Franciosi and F. de Giovanni: Products of Groups.Clarendon Press, Oxford, 1992. MR 1211633
Reference: [2] J.  Cossey and S.  Stonehewer: On the derived length of finite dinilpotent groups.Bull. London Math. Soc. 30 (1998), 247–250. MR 1608098, 10.1112/S0024609397004050
Reference: [3] A.  Mann: The derived length of $p$-groups.J.  Algebra 224 (2000), 263–267. Zbl 0953.20008, MR 1739580, 10.1006/jabr.1998.8045
Reference: [4] M.  Morigi: A note on factorized (finite) groups.Rend. Sem. Mat. Padova 98 (1997), 101–105. MR 1492971
Reference: [5] E. A.  Pennington: On products of finite nilpotent groups.Math. Z. 134 (1973), 81–83. MR 0325764, 10.1007/BF01219093
.

Files

Files Size Format View
CzechMathJ_55-2005-4_15.pdf 283.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo