Title:
|
On harmonic majorization of the Martin function at infinity in a cone (English) |
Author:
|
Miyamoto, I. |
Author:
|
Yanagishita, M. |
Author:
|
Yoshida, H. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
55 |
Issue:
|
4 |
Year:
|
2005 |
Pages:
|
1041-1054 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
This paper shows that some characterizations of the harmonic majorization of the Martin function for domains having smooth boundaries also hold for cones. (English) |
Keyword:
|
harmonic majorization |
Keyword:
|
cone |
Keyword:
|
minimally thin |
MSC:
|
31B05 |
MSC:
|
31B20 |
idZBL:
|
Zbl 1081.31006 |
idMR:
|
MR2184382 |
. |
Date available:
|
2009-09-24T11:30:06Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128043 |
. |
Reference:
|
[1] H. Aikawa: Sets of determination for harmonic functions in an NTA domain.J. Math. Soc. Japan 48 (1996), 299-315. Zbl 0862.31002, MR 1376083, 10.2969/jmsj/04820299 |
Reference:
|
[2] H. Aikawa, M. Essén: Potential Theory-Selected Topics. Lecture Notes in Math. Vol. 1633.Springer-Verlag, , 1996. MR 1439503 |
Reference:
|
[3] A. Ancona: Positive Harmonic Functions and Hyperbolicity.Lecture Notes in Math. Vol. 1344, Springer-Verlag, 1987, pp. 1–23. MR 0973878 |
Reference:
|
[4] D. H. Armitage, Ü. Kuran: On positive harmonic majorization of $y$ in $\mathbb{R}^{n}\times (0,+\infty )$.J. London Math. Soc. Ser. II 3 (1971), 733–741. MR 0289799 |
Reference:
|
[5] D. H. Armitage, S. J. Gardiner: Classical Potential Theory.Springer-Verlag, , 2001. MR 1801253 |
Reference:
|
[6] V. S. Azarin: Generalization of a theorem of Hayman on subharmonic functions in an $m$-dimensional cone Am. Math. Soc. Transl. II. Ser..80 (1969), 119–138. |
Reference:
|
[7] A. Beurling: A minimum principle for positive harmonic functions.Ann. Acad. Sci. Fenn. Ser. AI. Math. 372 (1965), . Zbl 0139.06402, MR 0188466 |
Reference:
|
[8] M. Brelot: On Topologies and Boundaries in Potential Theory. Lect. Notes in Math. Vol. 175.Springer-Verlag, , 1971. MR 0281940 |
Reference:
|
[9] R. Courant, D. Hilbert: Methods of Mathematical Physics, 1st English edition.Interscience, New York, 1954. |
Reference:
|
[10] B. E. J. Dahlberg: A minimum principle for positive harmonic functions.Proc. London Math. Soc. 33 (1976), 2380–250. Zbl 0342.31004, MR 0409847 |
Reference:
|
[11] J. L. Doob: Classical Potential Theory and its Probabilistic Counterpart.Springer-Verlag, 1984. Zbl 0549.31001, MR 0731258 |
Reference:
|
[12] D. S. Jerison, C. E. Kenig: Boundary behavior of harmonic functions in non-tangentially accessible domains.Adv. Math. 46 (1982), 80–147. MR 0676988, 10.1016/0001-8708(82)90055-X |
Reference:
|
[13] D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order.Springer-Verlag, Berlin, 1977. MR 0473443 |
Reference:
|
[14] L. L. Helms: Introduction to Potential Theory.Wiley, New York, 1969. Zbl 0188.17203, MR 0261018 |
Reference:
|
[15] V. G. Maz’ya: Beurling’s theorem on a minimum principle for positive harmonic functions.Zapiski Nauchnykh Seminarov LOMI 30 (1972). MR 0330484 |
Reference:
|
[16] I. Miyamoto, M. Yanagishitam, and H. Yoshida: Beurling-Dahlberg-Sjögren type theorems for minimally thin sets in a cone.Canad. Math. Bull. 46 (2003), 252–264. MR 1981679, 10.4153/CMB-2003-025-5 |
Reference:
|
[17] I. Miyamoto, H. Yoshida: Two criteria of Wiener type for minimally thin sets and rarefied sets in a cone.J. Math. Soc. Japan 54 (2002), 487–512. MR 1900954, 10.2969/jmsj/1191593906 |
Reference:
|
[18] P. Sjögren: Une propriété des fonctions harmoniques positives d’après Dahlberg, Séminaire de théorie du potentiel.Lecture Notes in Math. Vol. 563, Springer-Verlag, , 1976, pp. 275–282. MR 0588344 |
Reference:
|
[19] E. M. Stein: Singular Integrals and Differentiability Properties of Functions.Princeton University Press, 1970. Zbl 0207.13501, MR 0290095 |
Reference:
|
[20] H. Yoshida: Nevanlinna norm of a subharmonic function on a cone or on a cylinder.Proc. London Math. Soc. Ser. III 54 (1987), 267–299. Zbl 0645.31003, MR 0872808 |
Reference:
|
[21] Y. Zhang: Ensembles équivalents a un point frontière dans un domaine lipshitzien, Séminaire de théorie du potentiel.Lecture Note in Math. Vol. 1393, Springer-Verlag, , 1989, pp. 256–265. MR 1663163 |
. |