Previous |  Up |  Next

Article

Title: On homomorphisms between $C^*$-algebras and linear derivations on $C^*$-algebras (English)
Author: Park, Chun-Gil
Author: Chu, Hahng-Yun
Author: Park, Won-Gil
Author: Wee, Hee-Jeong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 55
Issue: 4
Year: 2005
Pages: 1055-1065
Summary lang: English
.
Category: math
.
Summary: It is shown that every almost linear Pexider mappings $f$, $g$, $h$ from a unital $C^*$-algebra $\mathcal A$ into a unital $C^*$-algebra $\mathcal B$ are homomorphisms when $f(2^n uy)=f(2^n u)f(y)$, $g(2^n uy)=g(2^nu)g(y)$ and $h(2^n uy)=h(2^n u)h(y)$ hold for all unitaries $u \in \mathcal A$, all $y \in \mathcal A$, and all $n\in \mathbb{Z}$, and that every almost linear continuous Pexider mappings $f$, $g$, $h$ from a unital $C^*$-algebra $\mathcal A$ of real rank zero into a unital $C^*$-algebra $\mathcal B$ are homomorphisms when $f(2^n uy)=f(2^n u)f(y)$, $g(2^n uy)=g(2^n u)g(y)$ and $h(2^n uy)=h(2^n u)h(y)$ hold for all $u \in \lbrace v\in \mathcal A\mid v=v^*\hspace{5.0pt}\text{and}\hspace{5.0pt}v\hspace{5.0pt}\text{is} \text{invertible}\rbrace $, all $y\in \mathcal A$ and all $n\in \mathbb{Z}$. Furthermore, we prove the Cauchy-Rassias stability of $*$-homomorphisms between unital $C^*$-algebras, and $\mathbb{C}$-linear $*$-derivations on unital $C^*$-algebras. (English)
Keyword: $C^*$-algebra homomorphism
Keyword: $C^*$-algebra
Keyword: real rank zero
Keyword: $\mathbb{C}$-linear $*$-derivation
Keyword: stability
MSC: 39B52
MSC: 39B82
MSC: 46L05
MSC: 47B48
idZBL: Zbl 1081.39025
idMR: MR2184383
.
Date available: 2009-09-24T11:30:14Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128044
.
Reference: [1] L.  Brown and G.  Pedersen: $C^*$-algebras of real rank zero.J.  Funct. Anal. 99 (1991), 131–149. MR 1120918, 10.1016/0022-1236(91)90056-B
Reference: [2] P.  Găvruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings.J.  Math. Anal. Appl. 184 (1994), 431–436. MR 1281518, 10.1006/jmaa.1994.1211
Reference: [3] B. E.  Johnson: Approximately multiplicative maps between Banach algebras.J.  London Math. Soc. 37 (1988), 294–316. Zbl 0652.46031, MR 0928525, 10.1112/jlms/s2-37.2.294
Reference: [4] K.  Jun, B.  Kim and D.  Shin: On Hyers-Ulam-Rassias stability of the Pexider equation.J. Math. Anal. Appl. 239 (1999), 20–29. MR 1719096
Reference: [5] R. V.  Kadison and G.  Pedersen: Means and convex combinations of unitary operators.Math. Scand. 57 (1985), 249–266. MR 0832356, 10.7146/math.scand.a-12116
Reference: [6] R. V.  Kadison and J. R.  Ringrose: Fundamentals of the Theory of Operator Algebras. Elementary Theory.Academic Press, New York, 1994. MR 0719020
Reference: [7] C.  Park and W.  Park: On the Jensen’s equation in Banach modules.Taiwanese J.  Math. 6 (2002), 523–531. MR 1937477, 10.11650/twjm/1500407476
Reference: [8] Th. M.  Rassias: On the stability of the linear mapping in Banach spaces.Proc. Amer. Math. Soc. 72 (1978), 297–300. Zbl 0398.47040, MR 0507327, 10.1090/S0002-9939-1978-0507327-1
.

Files

Files Size Format View
CzechMathJ_55-2005-4_19.pdf 327.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo