Previous |  Up |  Next

Article

Title: Commutative idempotent residuated lattices (English)
Author: Stanovský, David
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 1
Year: 2007
Pages: 191-200
Summary lang: English
.
Category: math
.
Summary: We investigate the variety of residuated lattices with a commutative and idempotent monoid reduct. (English)
Keyword: residuated lattice
Keyword: semilattice
Keyword: finitely based variety
Keyword: minimal variety
MSC: 06B20
MSC: 06F05
idZBL: Zbl 1174.06332
idMR: MR2309960
.
Date available: 2009-09-24T11:45:06Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128166
.
Reference: [1] P.  Bahls, J.  Cole, N.  Galatos, P.  Jipsen, and C.  Tsinakis: Cancellative residuated lattices.Algebra Universalis 50 (2003), 83–106. MR 2026830, 10.1007/s00012-003-1822-4
Reference: [2] K.  Baker, J.  Wang: Definable principal subcongruences.Algebra Universalis 47 (2002), 145–151. MR 1916612, 10.1007/s00012-002-8180-5
Reference: [3] S.  Burris, H. P.  Sankappanavar: A Course in Universal Algebra. GTM  78.Springer-Verlag, New York-Heidelberg-Berlin, 1981. MR 0648287
Reference: [4] K.  Blount, C.  Tsinakis: The structure of residuated lattices.Internat. J.  Algebra Comput. 13 (2003), 437–461. MR 2022118, 10.1142/S0218196703001511
Reference: [5] R. P.  Dilworth, M.  Ward: Residuated lattices.Trans. Amer. Math. Soc. 45 (1939), 335–354. MR 1501995, 10.1090/S0002-9947-1939-1501995-3
Reference: [6] N.  Galatos: Minimal varieties of residuated-lattices.Algebra Universalis 52 (2004), 215–239. Zbl 1082.06011, MR 2161651, 10.1007/s00012-004-1870-4
Reference: [7] N.  Galatos: Equational bases for joins of residuated-lattice varieties.Studia Logica 76 (2004), 227–240. Zbl 1068.06007, MR 2072984, 10.1023/B:STUD.0000032086.42963.7c
Reference: [8] N.  Galatos: Varieties of residuated lattices.PhD. Thesis, Vanderbilt University, 2003. MR 2704503
Reference: [9] J.  Hart, L.  Rafter, and C.  Tsinakis: The structure of commutative residuated lattices.Internat. J.  Algebra Comput. 12 (2002), 509–524. MR 1919685, 10.1142/S0218196702001048
Reference: [10] P.  Jipsen, C.  Tsinakis: A survey of residuated lattices.In: Ordered Algebraic Structures, J.  Martinez (ed.), Kluwer Academic Publishers, Dordrecht, 2002, pp. 19–56. MR 2083033
Reference: [11] R.  McKenzie: Equational bases for lattice theories.Math. Scand. 27 (1970), 24–38. Zbl 0307.08001, MR 0274353, 10.7146/math.scand.a-10984
Reference: [12] R.  McKenzie, G.  McNulty, and W.  Taylor: Algebras, Lattices, Varieties, Vol  I.Wadsworth & Brooks/Cole, Monterey, 1987. MR 0883644
.

Files

Files Size Format View
CzechMathJ_57-2007-1_17.pdf 323.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo