Previous |  Up |  Next

Article

Title: Topological and metric rigidity teorems for hypersurfaces in a hyperbolic space (English)
Author: Wang, Qiaoling
Author: Xia, Changyu
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 1
Year: 2007
Pages: 435-445
Summary lang: English
.
Category: math
.
Summary: In this paper we study the topological and metric rigidity of hypersurfaces in ${\mathbb H}^{n+1}$, the $(n+1)$-dimensional hyperbolic space of sectional curvature $-1$. We find conditions to ensure a complete connected oriented hypersurface in ${\mathbb H}^{n+1}$ to be diffeomorphic to a Euclidean sphere. We also give sufficient conditions for a complete connected oriented closed hypersurface with constant norm of the second fundamental form to be totally umbilic. (English)
Keyword: rigidity
Keyword: hypersurfaces
Keyword: topology
Keyword: hyperbolic space
MSC: 53C20
MSC: 53C24
MSC: 53C40
MSC: 53C42
idZBL: Zbl 1174.53318
idMR: MR2309976
.
Date available: 2009-09-24T11:46:52Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128182
.
Reference: [1] A. D. Alexandrov: A characteristic property of spheres.Ann. Mat. Pura Appl. 58 (1962), 303–315. MR 0143162, 10.1007/BF02413056
Reference: [2] H. Alencar, M. do  Carmo, and W. Santos: A gap theorem for hypersurfaces of the sphere with constant scalar curvature one.Comment. Math. Helv. 77 (2002), 549–562. MR 1933789, 10.1007/s00014-002-8351-1
Reference: [3] S. Alexander: Locally convex hypersurfaces of negatively curved spaces.Proc. Amer. Math. Soc. 64 (1977), 321–325. Zbl 0398.53028, MR 0448262, 10.1090/S0002-9939-1977-0448262-6
Reference: [4] S. S. Chern, M. do  Carmo, and S. Kobayashi: Minimal submanifolds of a sphere with second fundamental form of constant length.In: Functional Analysis and Related Fields, F.  Browder (ed.), Springer-Verlag, Berlin, 1970, pp. 59–75. MR 0273546
Reference: [5] M. P. do  Carmo: Riemannian Geometry.Bikhäuser-Verlag, Boston, 1993.
Reference: [6] M. P. do  Carmo, F. W. Warner: Rigidity and convexity of hypersurfaces in spheres.J.  Diff. Geom. 4 (1970), 133–144. MR 0266105, 10.4310/jdg/1214429378
Reference: [7] S. Y. Cheng, S. T. Yau: Hypersurfaces with constant scalar curvature.Math. Ann. 225 (1977), 195–204. MR 0431043, 10.1007/BF01425237
Reference: [8] P. Hartman, L. Nirenberg: On spherical image maps whose Jacobians do not change sign.Amer. J.  Math. 81 (1959), 901–920. MR 0126812, 10.2307/2372995
Reference: [9] H. Z. Li: Hypersurfaces with constant scalar curvature in space forms.Math. Ann. 305 (1996), 665–672. Zbl 0864.53040, MR 1399710, 10.1007/BF01444243
Reference: [10] W. S.  Massey: Algebraic Topology: An Introduction. 4th corr. print. Graduate Texts in Mathematics Vol. 56.Springer-Verlag, New York-Heidelberg-Berlin, 1967. MR 0211390
Reference: [11] S. Montiel, A. Ros: Compact hypersurfaces: the Alexandrov theorem for higher order mean curvatures. Differential geometry.Pitman Monographs. Surveys Pure Appl. Math.,  52, Longman Sci. Tech., Harlow, 1991, pp. 279–296. MR 1173047
Reference: [12] M. Okumura: Hypersurfaces and a pinching problem on the second fundamental tensor.Amer. J.  Math. 96 (1974), 207–214. Zbl 0302.53028, MR 0353216, 10.2307/2373587
Reference: [13] C. K. Peng, C. L. Terng: Minimal hypersurfaces of spheres with constant scalar curvature.Ann. Math. Stud. 103 (1983), 177–198. MR 0795235
Reference: [14] C. K. Peng, C. L. Terng: The scalar curvature of minimal hypersurfaces in spheres.Math. Ann. 266 (1983), 105–113. MR 0722930, 10.1007/BF01458707
Reference: [15] A. Ros: Compact hypersurfaces with constant scalar curvature and a congruence theorem.J.  Differential Geom. 27 (1988), 215–223. Zbl 0638.53051, MR 0925120, 10.4310/jdg/1214441779
Reference: [16] A. Ros: Compact hypersurfaces with constant higher order mean curvatures.Rev. Mat. Iberoamericana 3 (1987), 447–453. Zbl 0673.53003, MR 0996826
Reference: [17] R. Sacksteder: On hypersurfaces with no negative sectional curvatures.Amer. J.  Math. 82 (1960), 609–630. Zbl 0194.22701, MR 0116292, 10.2307/2372973
Reference: [18] J. Simons: Minimal varieties in Riemannian manifolds.Ann. Math. 88 (1968), 62–105. Zbl 0181.49702, MR 0233295, 10.2307/1970556
.

Files

Files Size Format View
CzechMathJ_57-2007-1_33.pdf 327.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo