Title:
|
Topological and metric rigidity teorems for hypersurfaces in a hyperbolic space (English) |
Author:
|
Wang, Qiaoling |
Author:
|
Xia, Changyu |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
57 |
Issue:
|
1 |
Year:
|
2007 |
Pages:
|
435-445 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we study the topological and metric rigidity of hypersurfaces in ${\mathbb H}^{n+1}$, the $(n+1)$-dimensional hyperbolic space of sectional curvature $-1$. We find conditions to ensure a complete connected oriented hypersurface in ${\mathbb H}^{n+1}$ to be diffeomorphic to a Euclidean sphere. We also give sufficient conditions for a complete connected oriented closed hypersurface with constant norm of the second fundamental form to be totally umbilic. (English) |
Keyword:
|
rigidity |
Keyword:
|
hypersurfaces |
Keyword:
|
topology |
Keyword:
|
hyperbolic space |
MSC:
|
53C20 |
MSC:
|
53C24 |
MSC:
|
53C40 |
MSC:
|
53C42 |
idZBL:
|
Zbl 1174.53318 |
idMR:
|
MR2309976 |
. |
Date available:
|
2009-09-24T11:46:52Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128182 |
. |
Reference:
|
[1] A. D. Alexandrov: A characteristic property of spheres.Ann. Mat. Pura Appl. 58 (1962), 303–315. MR 0143162, 10.1007/BF02413056 |
Reference:
|
[2] H. Alencar, M. do Carmo, and W. Santos: A gap theorem for hypersurfaces of the sphere with constant scalar curvature one.Comment. Math. Helv. 77 (2002), 549–562. MR 1933789, 10.1007/s00014-002-8351-1 |
Reference:
|
[3] S. Alexander: Locally convex hypersurfaces of negatively curved spaces.Proc. Amer. Math. Soc. 64 (1977), 321–325. Zbl 0398.53028, MR 0448262, 10.1090/S0002-9939-1977-0448262-6 |
Reference:
|
[4] S. S. Chern, M. do Carmo, and S. Kobayashi: Minimal submanifolds of a sphere with second fundamental form of constant length.In: Functional Analysis and Related Fields, F. Browder (ed.), Springer-Verlag, Berlin, 1970, pp. 59–75. MR 0273546 |
Reference:
|
[5] M. P. do Carmo: Riemannian Geometry.Bikhäuser-Verlag, Boston, 1993. |
Reference:
|
[6] M. P. do Carmo, F. W. Warner: Rigidity and convexity of hypersurfaces in spheres.J. Diff. Geom. 4 (1970), 133–144. MR 0266105, 10.4310/jdg/1214429378 |
Reference:
|
[7] S. Y. Cheng, S. T. Yau: Hypersurfaces with constant scalar curvature.Math. Ann. 225 (1977), 195–204. MR 0431043, 10.1007/BF01425237 |
Reference:
|
[8] P. Hartman, L. Nirenberg: On spherical image maps whose Jacobians do not change sign.Amer. J. Math. 81 (1959), 901–920. MR 0126812, 10.2307/2372995 |
Reference:
|
[9] H. Z. Li: Hypersurfaces with constant scalar curvature in space forms.Math. Ann. 305 (1996), 665–672. Zbl 0864.53040, MR 1399710, 10.1007/BF01444243 |
Reference:
|
[10] W. S. Massey: Algebraic Topology: An Introduction. 4th corr. print. Graduate Texts in Mathematics Vol. 56.Springer-Verlag, New York-Heidelberg-Berlin, 1967. MR 0211390 |
Reference:
|
[11] S. Montiel, A. Ros: Compact hypersurfaces: the Alexandrov theorem for higher order mean curvatures. Differential geometry.Pitman Monographs. Surveys Pure Appl. Math., 52, Longman Sci. Tech., Harlow, 1991, pp. 279–296. MR 1173047 |
Reference:
|
[12] M. Okumura: Hypersurfaces and a pinching problem on the second fundamental tensor.Amer. J. Math. 96 (1974), 207–214. Zbl 0302.53028, MR 0353216, 10.2307/2373587 |
Reference:
|
[13] C. K. Peng, C. L. Terng: Minimal hypersurfaces of spheres with constant scalar curvature.Ann. Math. Stud. 103 (1983), 177–198. MR 0795235 |
Reference:
|
[14] C. K. Peng, C. L. Terng: The scalar curvature of minimal hypersurfaces in spheres.Math. Ann. 266 (1983), 105–113. MR 0722930, 10.1007/BF01458707 |
Reference:
|
[15] A. Ros: Compact hypersurfaces with constant scalar curvature and a congruence theorem.J. Differential Geom. 27 (1988), 215–223. Zbl 0638.53051, MR 0925120, 10.4310/jdg/1214441779 |
Reference:
|
[16] A. Ros: Compact hypersurfaces with constant higher order mean curvatures.Rev. Mat. Iberoamericana 3 (1987), 447–453. Zbl 0673.53003, MR 0996826 |
Reference:
|
[17] R. Sacksteder: On hypersurfaces with no negative sectional curvatures.Amer. J. Math. 82 (1960), 609–630. Zbl 0194.22701, MR 0116292, 10.2307/2372973 |
Reference:
|
[18] J. Simons: Minimal varieties in Riemannian manifolds.Ann. Math. 88 (1968), 62–105. Zbl 0181.49702, MR 0233295, 10.2307/1970556 |
. |