Article
Keywords:
Lucas; Fibonacci; pseudoprime; Fermat
Summary:
Let $d$ be a fixed positive integer. A Lucas $d$-pseudoprime is a Lucas pseudoprime $N$ for which there exists a Lucas sequence $U(P,Q)$ such that the rank of $N$ in $U(P,Q)$ is exactly $(N - \varepsilon (N))/d$, where $\varepsilon $ is the signature of $U(P,Q)$. We prove here that all but a finite number of Lucas $d$-pseudoprimes are square free. We also prove that all but a finite number of Lucas $d$-pseudoprimes are Carmichael-Lucas numbers.
References:
[2] J. Brillhart, D. H. Lehmer, and J. L. Selfridge:
New primality criteria and factorizations of $2^m\pm 1$. Math. Comput. 29 (1975), 620–647.
MR 0384673
[3] W. Carlip, E. Jacobson, and L. Somer:
Pseudoprimes, perfect numbers, and a problem of Lehmer. Fibonacci Quart. 36 (1998), 361–371.
MR 1640372
[4] W. Carlip, L. Somer:
Primitive Lucas $d$-pseudoprimes and Carmichael-Lucas numbers. Colloq. Math (to appear).
MR 2291618
[5] W. Carlip, L. Somer:
Bounds for frequencies of residues of regular second-order recurrences modulo $p^r$. In: Number Theory in Progress, Vol. 2 (Zakopané-Kościelisko, 1997). de Gruyter, Berlin (1999), 691–719.
MR 1689539
[6] R. D. Carmichael:
On the numerical factors of the arithmetic forms $\alpha ^n\pm \beta ^n$. Ann. of Math. (2) 15 (1913), 30–70.
MR 1502458
[7] É. Lucas:
Théorie des fonctions numériques simplement périodiques. Amer. J. Math. 1 (1878), 184–240, 289–321. (French)
MR 1505176
[9] J. Roberts:
Lure of the Integers. Mathematical Association of America, Washington, DC, 1992.
MR 1189138
[10] L. Somer:
On Lucas $d$-pseudoprimes. In: Applications of Fibonacci Numbers, Vol. 7 (Graz, 1996). Kluwer Academic Publishers, Dordrecht (1998), 369–375.
MR 1638463 |
Zbl 0919.11008