Previous |  Up |  Next

Article

Title: Cohomology operations and the Deligne conjecture (English)
Author: Markl, M.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 1
Year: 2007
Pages: 473-503
Summary lang: English
.
Category: math
.
Summary: The aim of this note, which raises more questions than it answers, is to study natural operations acting on the cohomology of various types of algebras. It contains a lot of very surprising partial results and examples. (English)
Keyword: cohomology
Keyword: natural operation
MSC: 18D50
MSC: 55P48
MSC: 55S25
idZBL: Zbl 1174.55002
idMR: MR2309979
.
Date available: 2009-09-24T11:47:12Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128185
.
Reference: [1] C. Berger: Combinatorial models for real configuration spaces and $E_n$-operads.In: Operads: Proceedings of Renaissance Conferences. Contemporary Math., Vol. 202, J. L.  Loday, J. D.  Stasheff, and A. A.  Voronov (eds.), Am. Math. Soc., 1997, pp. 37–52. MR 1436916
Reference: [2] F. Chapoton, M. Livernet: Pre-Lie algebras and the rooted trees operad.Internat. Math. Res. Not. 8 (2001), 395–408. MR 1827084
Reference: [3] I. Ciocan-Fontanine, M. Kapranov: Derived Hilbert schemes.J.  Am. Math. Soc. 15 (2002), 787–815. MR 1915819, 10.1090/S0894-0347-02-00399-5
Reference: [4] I. Ciocan-Fontanine, M. M.  Kapranov: Derived Quot schemes.Ann. Sci. Éc. Norm. Supér, IV.  Sér. 34 (2001), 403–440. MR 1839580, 10.1016/S0012-9593(01)01064-3
Reference: [5] P. Deligne: A letter to Stasheff, Gerstenhaber, May, Schechtman and Drinfeld.Unpublished, 1993.
Reference: [6] A. Dzhumadil’daev, C. Löfwall: Trees, free right-symmetric algebras, free Novikov algebras and identities.Homotopy Homology Appl. 4 (2002), 165–190. MR 1918188
Reference: [7] Z. Fiedorowicz: The symmetric bar construction.Preprint, available from the author’s home page.
Reference: [8] T. F.  Fox, M. Markl: Distributive laws, bialgebras, and cohomology.Operads: Proceedings of Renaissance Conferences. Contemporary Math., Vol.  202, J.-L.  Loday, J. D.  Stasheff, and A. A.  Voronov (eds.), 1997, pp. 167–205. MR 1436921
Reference: [9] M. Gerstenhaber: The cohomology structure of an associative ring.Ann. Math. 78 (1963), 267–288. Zbl 0131.27302, MR 0161898, 10.2307/1970343
Reference: [10] M. Gerstenhaber, S. D.  Schack: Algebraic cohomology and deformation theory.In: Deformation Theory of Algebras and Structures and Applications, Kluwer, Dordrecht, 1988, pp. 11–264. MR 0981619
Reference: [11] M. Gerstenhaber, A. A.  Voronov: Higher operations on the Hochschild complex.Funct. Anal. Appl. 29 (1995), 1–5. (Russian) MR 1328534, 10.1007/BF01077036
Reference: [12] E. Getzler, J. D. S.  Jones: Operads, homotopy algebra, and iterated integrals for double loop spaces.Preprint hep-th/9403055, March  1994.
Reference: [13] V. Ginzburg, M. M.  Kapranov: Koszul duality for operads.Duke Math.  J. 76 (1994), 203–272. MR 1301191, 10.1215/S0012-7094-94-07608-4
Reference: [14] V. Hinich: Tamarkin’s proof of Kontsevich formality theorem.Forum Mathematicum 15 (2003), 591–614. Zbl 1081.16014, MR 1978336
Reference: [15] P. Hu: Higher string topology on general spaces.Proc. London Math. Soc. 93 (2006), 515–544. Zbl 1103.55008, MR 2251161, 10.1112/S0024611506015838
Reference: [16] P. Hu, I. Kříž, and A. A.  Voronov: On Kontsevich’s Hochschild cohomology conjecture.Compos. Math. 142 (2006), 143–168. MR 2197407
Reference: [17] R. M.  Kaufmann: On spineless cacti, Deligne’s conjecture and Connes-Kreimer’s Hopf algebra.Preprint  math.QA/0308005, August  2003. Zbl 1140.55008, MR 2288726
Reference: [18] A. A.  Klyachko: Lie elements in the tensor algebra.Sib. Math.  J. 15 (1974), 914–920. 10.1007/BF00966559
Reference: [19] J. Kock, B. Toën: Simplicial localization of monoidal structures, and a non-linear version of Deligne’s conjecture.Compos. Math. 141 (2005), 253–261. MR 2099778
Reference: [20] M. Kontsevich, Y. Soibelman: Deformations of algebras over operads and Deligne’s conjecture.Math. Phys. Stud. 21 (2000), 255–307. MR 1805894
Reference: [21] I. Kříž, J. P.  May: Operads, Algebras, Modules and Motives. Astérisque, Vol.  233.Société Mathématique de France, 1995. MR 1361938
Reference: [22] T. Lada, M. Markl: Symmetric brace algebras.Appl. Categorical Structures 13 (2005), 351–370. MR 2175956, 10.1007/s10485-005-0911-2
Reference: [23] M. Markl: Cotangent cohomology of a category of deformations.J.  Pure Appl. Algebra 113 (1996), 195–218. Zbl 0865.18011, MR 1415558, 10.1016/0022-4049(95)00152-2
Reference: [24] M. Markl: Models for operads.Commun. Algebra 24 (1996), 1471–1500. Zbl 0848.18003, MR 1380606, 10.1080/00927879608825647
Reference: [25] M. Markl: The existence of intrinsic brackets on the cohomology of bialgebras.Preprint  math.AT/0411456, November  2004.
Reference: [26] M. Markl, S. Shnider, and J. D.  Stasheff: Operads in Algebra, Topology and Physics. Mathematical Surveys and Monographs, Vol. 96.American Mathematical Society, Providence, 2002. MR 1898414
Reference: [27] J. P.  May: The Geometry of Iterated Loop Spaces. Lecture Notes in Mathematics, Vol.  271.Springer-Verlag, New York, 1972. MR 0420610
Reference: [28] J. E.  McClure, J. H.  Smith: A solution of Deligne’s Hochschild cohomology conjecture.In: Proceedings of the JAMI  conference on Homotopy Theory. Contemp. Math. Vol. 293, 2002, pp. 153–193. MR 1890736
Reference: [29] J. E.  McClure, J. H.  Smith: Multivariable cochain operations and little $n$-cubes.J.  Am. Math. Soc. 16 (2003), 681–704. MR 1969208, 10.1090/S0894-0347-03-00419-3
Reference: [30] P. Salvatore: Configuration spaces with summable labels.In: Cohomological Methods in Homotopy Theory. Proceedings of the Barcelona conference on algebraic topology (BCAT), Bellaterra, Spain, June 4-10, 1998. Prog. Math.  196, J. Aguadé (ed.), Birkhäuser-Verlag, Basel, 2001, pp. 375–395. Zbl 1034.55007, MR 1851264
Reference: [31] M. Schlessinger, J. D.  Stasheff: The Lie algebra structure of tangent cohomology and deformation theory.J.  Pure Appl. Algebra 38 (1985), 313–322. MR 0814187, 10.1016/0022-4049(85)90019-2
Reference: [32] D. Tamarkin, B. Tsygan: Cyclic formality and index theorem.Lett. Math. Phys. 56 (2001), 85–97. MR 1854129, 10.1023/A:1010838604927
Reference: [33] D. E.  Tamarkin: Another proof of M. Kontsevich formality theorem.Preprint  math.QA/9803025, March  1998.
Reference: [34] D. E.  Tamarkin: Formality of chain operad of little discs.Lett. Math. Phys. 66 (2003), 65–72. Zbl 1048.18007, MR 2064592, 10.1023/B:MATH.0000017651.12703.a1
Reference: [35] P. van der Laan: Operads up to homotopy and deformations of operad maps.Preprint  math.QA/0208041, August  2002.
Reference: [36] A. A.  Voronov: Homotopy Gerstenhaber algebras.In: Conférence Moshé Flato  1999: Quantization, deformations, and symmetries, II. Math. Phys. Stud. Vol. 22, G. Dito (ed.), Kluwer Academic Publishers, Providence, 2000, pp. 307–331. Zbl 0974.16005, MR 1805923
.

Files

Files Size Format View
CzechMathJ_57-2007-1_36.pdf 516.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo