Title:
|
The Neumann problem for the Laplace equation on general domains (English) |
Author:
|
Medková, Dagmar |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
57 |
Issue:
|
4 |
Year:
|
2007 |
Pages:
|
1107-1139 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The solution of the weak Neumann problem for the Laplace equation with a distribution as a boundary condition is studied on a general open set $G$ in the Euclidean space. It is shown that the solution of the problem is the sum of a constant and the Newtonian potential corresponding to a distribution with finite energy supported on $\partial G$. If we look for a solution of the problem in this form we get a bounded linear operator. Under mild assumptions on $G$ a necessary and sufficient condition for the solvability of the problem is given and the solution is constructed. (English) |
Keyword:
|
Laplace equation |
Keyword:
|
Neumann problem |
Keyword:
|
potential |
Keyword:
|
boundary integral equation method |
MSC:
|
31B10 |
MSC:
|
35D05 |
MSC:
|
35J05 |
MSC:
|
35J25 |
idZBL:
|
Zbl 1174.31305 |
idMR:
|
MR2357583 |
. |
Date available:
|
2009-09-24T11:52:02Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128230 |
. |
Reference:
|
[1] D. R. Adams, L. I. Hedberg: Function Spaces and Potential Theory. Grundlehren der mathematischen Wissenschaften 314.Springer-Verlag, Berlin-Heidelberg, 1995. MR 1411441 |
Reference:
|
[2] D. H. Armitage, S. J. Gardiner: Classical Potential Theory.Springer-Verlag, London, 2001. MR 1801253 |
Reference:
|
[3] J. Deny: Les potentiels d’énergie finie.Acta Math. 82 (1950), 107–183. Zbl 0034.36201, MR 0036371, 10.1007/BF02398276 |
Reference:
|
[4] L. E. Fraenkel: Introduction to Maximum Principles and Symmetry in Elliptic Problems.Cambridge University Press, Cambridge, 2000. Zbl 0947.35002, MR 1751289 |
Reference:
|
[5] L. L. Helms: Introduction to Potential Theory. Pure and Applied Mathematics 22.John Wiley & Sons, 1969. MR 0261018 |
Reference:
|
[6] H. Heuser: Funktionalanalysis.Teubner, Stuttgart, 1975. Zbl 0309.47001, MR 0482021 |
Reference:
|
[7] S. Jerison, C. E. Kenig: Boundary behavior of harmonic functions in non-tangentially accessible domains.Adv. Math. 47 (1982), 80–147. 10.1016/0001-8708(82)90055-X |
Reference:
|
[8] P. W. Jones: Quasiconformal mappings and extendability of functions in Sobolev spaces.Acta Math. 147 (1981), 71–88. Zbl 0489.30017, MR 0631089, 10.1007/BF02392869 |
Reference:
|
[9] J. J. Koliha: A generalized Drazin inverse.Glasgow Math. J. 38 (1996), 367–381. Zbl 0897.47002, MR 1417366, 10.1017/S0017089500031803 |
Reference:
|
[10] P. Koskela, H. Tuominen: Measure density and extendability of Sobolev functions.(to appear). |
Reference:
|
[11] J. Král: Integral Operators in Potential Theory. Lecture Notes in Mathematics 823.Springer-Verlag, Berlin, 1980, pp. . MR 0590244 |
Reference:
|
[12] N. L. Landkof: Fundamentals of Modern Potential Theory.Izdat. Nauka, Moscow, 1966. (Russian) MR 0214795 |
Reference:
|
[13] V. G. Maz’ya, S. V. Poborchi: Differentiable Functions on Bad Domains.World Scientific Publishing, Singapore, 1997. MR 1643072 |
Reference:
|
[14] W. McLean: Strongly Elliptic Systems and Boundary Integral Equations.Cambridge University Press, Cambridge, 2000. Zbl 0948.35001, MR 1742312 |
Reference:
|
[15] D. Medková: Solution of the Robin problem for the Laplace equation.Appl. Math. 43 (1998), 133–155. MR 1609158, 10.1023/A:1023267018214 |
Reference:
|
[16] D. Medková: Solution of the Neumann problem for the Laplace equation.Czechoslovak Math. J. 48 (1998), 768–784. 10.1023/A:1022447908645 |
Reference:
|
[17] C. Miranda: Differential Equations of Elliptic Type.Springer-Verlag, Berlin, 1970. Zbl 0198.14101, MR 0284700 |
Reference:
|
[18] I. Netuka: Smooth surfaces with infinite cyclic variation.Čas. Pěst. Mat. 96 (1971), 86–101. (Czech) Zbl 0204.08002, MR 0284553 |
Reference:
|
[19] M. Schechter: Principles of Functional Analysis.Am. Math. Soc., Providence, 2002. MR 1861991 |
Reference:
|
[20] G. E. Shilov: Mathematical Analysis. Second Special Course.Nauka, Moskva, 1965. (Russian) MR 0219869 |
Reference:
|
[21] Ch. G. Simader, H. Sohr: The Dirichlet Problem for the Laplacian in Bounded and Unbounded Domains. Pitman Research Notes in Mathematics Series 360.Addison Wesley Longman Inc., Essex, 1996. MR 1454361 |
Reference:
|
[22] J. Stampfli: Hyponormal operators.Pacific J. Math. 12 (1962), 1453–1458. Zbl 0129.08701, MR 0149282, 10.2140/pjm.1962.12.1453 |
Reference:
|
[23] O. Steinbach, W. L. Wendland: On C. Neumann’s method for second-order elliptic systems in domains with non-smooth boundaries.J. Math. Anal. Appl. 262 (2001), 733–748. MR 1859336, 10.1006/jmaa.2001.7615 |
Reference:
|
[24] G. Verchota: Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains.J. Funct. Anal. 59 (1984), 572–611. Zbl 0589.31005, MR 0769382, 10.1016/0022-1236(84)90066-1 |
Reference:
|
[25] K. Yosida: Functional Analysis.Springer-Verlag, Berlin, 1965. Zbl 0126.11504 |
. |