Title:
|
$g$-metrizable spaces and the images of semi-metric spaces (English) |
Author:
|
Ge, Ying |
Author:
|
Lin, Shou |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
57 |
Issue:
|
4 |
Year:
|
2007 |
Pages:
|
1141-1149 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we prove that a space $X$ is a $g$-metrizable space if and only if $X$ is a weak-open, $\pi $ and $\sigma $-image of a semi-metric space, if and only if $X$ is a strong sequence-covering, quotient, $\pi $ and $mssc$-image of a semi-metric space, where “semi-metric” can not be replaced by “metric”. (English) |
Keyword:
|
$g$-metrizable spaces |
Keyword:
|
$sn$-metrizable spaces |
Keyword:
|
weak-open mappings |
Keyword:
|
strong sequence-covering mappings |
Keyword:
|
quotient mappings |
Keyword:
|
$\pi $-mappings |
Keyword:
|
$\sigma $-mappings |
Keyword:
|
$mssc$-mappings |
MSC:
|
54C10 |
MSC:
|
54D55 |
MSC:
|
54E25 |
MSC:
|
54E35 |
MSC:
|
54E40 |
idZBL:
|
Zbl 1174.54018 |
idMR:
|
MR2357584 |
. |
Date available:
|
2009-09-24T11:52:08Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128231 |
. |
Reference:
|
[1] A. V. Arhangel’skiǐ: Mappings and spaces.Russian Math. Surveys 21 (1966), 115–162. MR 0227950 |
Reference:
|
[2] J. R. Boone and F. Siwiec: Sequentially quotient mappings.Czech. Math. J. 26 (1976), 174–182. MR 0402689 |
Reference:
|
[3] R. Engelking: General Topology (revised and completed edition).Heldermann-Verlag, Berlin, 1989. MR 1039321 |
Reference:
|
[4] S. P. Franklin: Spaces in which sequences suffice.Fund. Math. 57 (1965), 107–115. Zbl 0132.17802, MR 0180954, 10.4064/fm-57-1-107-115 |
Reference:
|
[5] Y. Ge: On $sn$-metrizable spaces.Acta Math. Sinica 45 (2002), 355–360. Zbl 1010.54027, MR 1928146 |
Reference:
|
[6] Y. Ge: Characterizations of $sn$-metrizable spaces.Publ. Inst. Math., Nouv. Ser. 74 (2003), 121–128. MR 2066998, 10.2298/PIM0374121G |
Reference:
|
[7] Y. Ikeda, C. Liu and Y. Tanaka: Quotient compact images of metric spaces, and related matters.Topology Appl. 122 (2002), 237–252. MR 1919303, 10.1016/S0166-8641(01)00145-6 |
Reference:
|
[8] J. Li: A note on $g$-metrizable spaces.Czech. Math. J. 53 (2003), 491–495. Zbl 1026.54026, MR 1983468, 10.1023/A:1026208025139 |
Reference:
|
[9] Z. Li: A note on $\aleph $-spaces and $g$-metrizable spaces.Czech. Math. J. 55 (2005), 803–808. Zbl 1081.54525, MR 2153103, 10.1007/s10587-005-0066-1 |
Reference:
|
[10] Z. Li and S. Lin: On the weak-open images of metric spaces.Czech. Math. J. 54 (2004), 393–400. MR 2059259, 10.1023/B:CMAJ.0000042377.80659.fb |
Reference:
|
[11] S. Lin: Point-Countable Covers and Sequence-Covering Mappings.Chinese Science Press, Beijing, 2002. Zbl 1004.54001, MR 1939779 |
Reference:
|
[12] S. Lin and P. Yan: Sequence-covering maps of metric spaces.Topology Appl. 109 (2001), 301–314. MR 1807392, 10.1016/S0166-8641(99)00163-7 |
Reference:
|
[13] S. Lin and P. Yan: Notes on $cfp$-covers.Comment. Math. Univ. Carolinae 44 (2003), 295–306. MR 2026164 |
Reference:
|
[14] J. Nagata: Generalized metric spaces I.Topics in General Topology, North-Holland, Amsterdam, 1989, pp. 313–366. Zbl 0698.54023, MR 1053200 |
Reference:
|
[15] V. I. Ponomarev: Axioms of countability and continuous mappings.Bull Pol. Acad Math. 8 (1960), 127–134. MR 0116314 |
Reference:
|
[16] F. Siwiec: Sequence-covering and countably bi-quotient mappings.General Topology Appl. 1 (1971), 143–154. Zbl 0218.54016, MR 0288737, 10.1016/0016-660X(71)90120-6 |
Reference:
|
[17] F. Siwiec: On defining a space by a weak base.Pacific J. Math. 52 (1974), 233–245. Zbl 0285.54022, MR 0350706, 10.2140/pjm.1974.52.233 |
Reference:
|
[18] Y. Tanaka: Symmetric spaces, $g$-developable spaces and $g$-metrizable spaces.Math. Japonica 36 (1991), 71–84. Zbl 0732.54023, MR 1093356 |
Reference:
|
[19] Y. Tanaka and Z. Li: Certain covering-maps and $k$-networks, and related matters.Topology Proc. 27 (2003), 317–334. MR 2048941 |
Reference:
|
[20] S. Xia: Characterizations of certain $g$-first countable spaces.Chinese Adv. Math. 29 (2000), 61–64. (Chinese) Zbl 0999.54010, MR 1769127 |
. |