Title:
|
On eigenvectors of mixed graphs with exactly one nonsingular cycle (English) |
Author:
|
Fan, Yi-Zheng |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
57 |
Issue:
|
4 |
Year:
|
2007 |
Pages:
|
1215-1222 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $G$ be a mixed graph. The eigenvalues and eigenvectors of $G$ are respectively defined to be those of its Laplacian matrix. If $G$ is a simple graph, [M. Fiedler: A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory, Czechoslovak Math. J. 25 (1975), 619–633] gave a remarkable result on the structure of the eigenvectors of $G$ corresponding to its second smallest eigenvalue (also called the algebraic connectivity of $G$). For $G$ being a general mixed graph with exactly one nonsingular cycle, using Fiedler’s result, we obtain a similar result on the structure of the eigenvectors of $G$ corresponding to its smallest eigenvalue. (English) |
Keyword:
|
mixed graphs |
Keyword:
|
Laplacian eigenvectors |
MSC:
|
05C50 |
MSC:
|
15A18 |
idZBL:
|
Zbl 1174.05075 |
idMR:
|
MR2357587 |
. |
Date available:
|
2009-09-24T11:52:28Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128234 |
. |
Reference:
|
[1] R. B. Bapat, S. Pati: Algebraic connectivity and the characteristic set of a graph.Linear Multilinear Algebra 45 (1998), 247–273. MR 1671627, 10.1080/03081089808818590 |
Reference:
|
[2] R. B. Bapat, J. W. Grossman, D. M. Kulkarni: Generalized matrix tree theorem for mixed graphs.Linear Multilinear Algebra 46 (1999), 299–312. MR 1729196, 10.1080/03081089908818623 |
Reference:
|
[3] R. B. Bapat, J. W. Grossman, D. M. Kulkarni: Edge version of the matrix tree theorem for trees.Linear Multilinear Algebra 47 (2000), 217–229. MR 1785029, 10.1080/03081080008818646 |
Reference:
|
[4] J. A. Bondy, U. S. R. Murty: Graph Theory with Applications.Elsevier, New York, 1976. MR 0411988 |
Reference:
|
[5] F. R. K. Chung: Spectral Graph Theory. Conference Board of the Mathematical Science, No. 92.Am. Math. Soc., Providence, 1997. MR 1421568 |
Reference:
|
[6] Y.-Z. Fan: On spectra integral variations of mixed graph.Linear Algebra Appl. 374 (2003), 307–316. MR 2008794, 10.1016/S0024-3795(03)00575-5 |
Reference:
|
[7] M. Fiedler: Algebraic connectivity of graphs.Czechoslovak Math. J. 23 (1973), 298–305. Zbl 0265.05119, MR 0318007 |
Reference:
|
[8] M. Fiedler: A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory.Czechoslovak Math. J. 25 (1975), 619–633. MR 0387321 |
Reference:
|
[9] J. W. Grossman, D. M. Kulkarni, I. E. Schochetman: Algebraic graph theory without orientations.Linear Algebra Appl. 212/213 (1994), 289–308. MR 1306983 |
Reference:
|
[10] J. M. Guo, S. W. Tan: A relation between the matching number and the Laplacian spectrum of a graph.Linear Algebra Appl. 325 (2001), 71–74. MR 1810095 |
Reference:
|
[11] R. A. Horn, C. R. Johnson: Matrix Analysis.Cambridge Univ. Press, Cambridge, 1985. MR 0832183 |
Reference:
|
[12] S. Kirkland, S. Fallat: Perron components and algebraic connectivity for weighted graphs.Linear Multilinear Algebra 44 (1998), 131–148. MR 1674228, 10.1080/03081089808818554 |
Reference:
|
[13] S. Kirkland, M. Neumann, B. Shader: Characteristic vertices of weighted trees via Perron values.Linear Multilinear Algebra 40 (1996), 311–325. MR 1384650, 10.1080/03081089608818448 |
Reference:
|
[14] L. S. Melnikov, V. G. Vizing: The edge chromatic number of a directed/mixed multi-graph.J. Graph Theory 31 (1999), 267–273. MR 1698744, 10.1002/(SICI)1097-0118(199908)31:4<267::AID-JGT1>3.3.CO;2-4 |
Reference:
|
[15] R. Merris: Laplacian matrices of graphs: a survey.Linear Algebra Appl. 197/198 (1994), 143–176. Zbl 0802.05053, MR 1275613 |
Reference:
|
[16] B. Mohar: Some applications of Laplacian eigenvalues of graphs.In: Graph Symmetry, G. Hahn and G. Sabidussi (eds.), Kluwer, Dordrecht, 1997, pp. 225–275. MR 1468791 |
Reference:
|
[17] X.-D. Zhang, J.-S. Li: The Laplacian spectrum of a mixed graph.Linear Algebra Appl. 353 (2002), 11–20. Zbl 1003.05073, MR 1918746 |
. |