Previous |  Up |  Next

Article

Title: On eigenvectors of mixed graphs with exactly one nonsingular cycle (English)
Author: Fan, Yi-Zheng
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 4
Year: 2007
Pages: 1215-1222
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a mixed graph. The eigenvalues and eigenvectors of $G$ are respectively defined to be those of its Laplacian matrix. If $G$ is a simple graph, [M. Fiedler: A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory, Czechoslovak Math. J. 25 (1975), 619–633] gave a remarkable result on the structure of the eigenvectors of $G$ corresponding to its second smallest eigenvalue (also called the algebraic connectivity of $G$). For $G$ being a general mixed graph with exactly one nonsingular cycle, using Fiedler’s result, we obtain a similar result on the structure of the eigenvectors of $G$ corresponding to its smallest eigenvalue. (English)
Keyword: mixed graphs
Keyword: Laplacian eigenvectors
MSC: 05C50
MSC: 15A18
idZBL: Zbl 1174.05075
idMR: MR2357587
.
Date available: 2009-09-24T11:52:28Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128234
.
Reference: [1] R. B.  Bapat, S.  Pati: Algebraic connectivity and the characteristic set of a graph.Linear Multilinear Algebra 45 (1998), 247–273. MR 1671627, 10.1080/03081089808818590
Reference: [2] R. B.  Bapat, J. W.  Grossman, D. M.  Kulkarni: Generalized matrix tree theorem for mixed graphs.Linear Multilinear Algebra 46 (1999), 299–312. MR 1729196, 10.1080/03081089908818623
Reference: [3] R. B.  Bapat, J. W.  Grossman, D. M.  Kulkarni: Edge version of the matrix tree theorem for trees.Linear Multilinear Algebra 47 (2000), 217–229. MR 1785029, 10.1080/03081080008818646
Reference: [4] J. A.  Bondy, U. S. R.  Murty: Graph Theory with Applications.Elsevier, New York, 1976. MR 0411988
Reference: [5] F. R. K.  Chung: Spectral Graph Theory. Conference Board of the Mathematical Science, No.  92.Am. Math. Soc., Providence, 1997. MR 1421568
Reference: [6] Y.-Z.  Fan: On spectra integral variations of mixed graph.Linear Algebra Appl. 374 (2003), 307–316. MR 2008794, 10.1016/S0024-3795(03)00575-5
Reference: [7] M.  Fiedler: Algebraic connectivity of graphs.Czechoslovak Math.  J. 23 (1973), 298–305. Zbl 0265.05119, MR 0318007
Reference: [8] M.  Fiedler: A property of eigenvectors of nonnegative symmetric matrices and its applications to graph theory.Czechoslovak Math.  J. 25 (1975), 619–633. MR 0387321
Reference: [9] J. W.  Grossman, D. M.  Kulkarni, I. E.  Schochetman: Algebraic graph theory without orientations.Linear Algebra Appl. 212/213 (1994), 289–308. MR 1306983
Reference: [10] J. M.  Guo, S. W.  Tan: A relation between the matching number and the Laplacian spectrum of a graph.Linear Algebra Appl. 325 (2001), 71–74. MR 1810095
Reference: [11] R. A.  Horn, C. R.  Johnson: Matrix Analysis.Cambridge Univ. Press, Cambridge, 1985. MR 0832183
Reference: [12] S.  Kirkland, S.  Fallat: Perron components and algebraic connectivity for weighted graphs.Linear Multilinear Algebra 44 (1998), 131–148. MR 1674228, 10.1080/03081089808818554
Reference: [13] S.  Kirkland, M.  Neumann, B.  Shader: Characteristic vertices of weighted trees via Perron values.Linear Multilinear Algebra 40 (1996), 311–325. MR 1384650, 10.1080/03081089608818448
Reference: [14] L. S.  Melnikov, V. G.  Vizing: The edge chromatic number of a directed/mixed multi-graph.J.  Graph Theory 31 (1999), 267–273. MR 1698744, 10.1002/(SICI)1097-0118(199908)31:4<267::AID-JGT1>3.3.CO;2-4
Reference: [15] R.  Merris: Laplacian matrices of graphs: a survey.Linear Algebra Appl. 197/198 (1994), 143–176. Zbl 0802.05053, MR 1275613
Reference: [16] B.  Mohar: Some applications of Laplacian eigenvalues of graphs.In: Graph Symmetry, G. Hahn and G. Sabidussi (eds.), Kluwer, Dordrecht, 1997, pp. 225–275. MR 1468791
Reference: [17] X.-D.  Zhang, J.-S.  Li: The Laplacian spectrum of a mixed graph.Linear Algebra Appl. 353 (2002), 11–20. Zbl 1003.05073, MR 1918746
.

Files

Files Size Format View
CzechMathJ_57-2007-4_8.pdf 272.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo