Previous |  Up |  Next

Article

Title: $LJ$-spaces (English)
Author: Gao, Yin-Zhu
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 57
Issue: 4
Year: 2007
Pages: 1223-1237
Summary lang: English
.
Category: math
.
Summary: In this paper $LJ$-spaces are introduced and studied. They are a common generalization of Lindelöf spaces and $J$-spaces researched by E. Michael. A space $X$ is called an $LJ$-space if, whenever $\lbrace A,B\rbrace $ is a closed cover of $X$ with $A\cap B$ compact, then $A$ or $B$ is Lindelöf. Semi-strong $LJ$-spaces and strong $LJ$-spaces are also defined and investigated. It is demonstrated that the three spaces are different and have interesting properties and behaviors. (English)
Keyword: $LJ$-spaces
Keyword: Lindelöf
Keyword: $J$-spaces
Keyword: $L$-map
Keyword: (countably) compact
Keyword: perfect map
Keyword: order topology
Keyword: connected
Keyword: topological linear spaces
MSC: 54D20
MSC: 54D30
MSC: 54F05
MSC: 54F65
idZBL: Zbl 1174.54012
idMR: MR2357588
.
Date available: 2009-09-24T11:52:35Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128235
.
Reference: [1] R. R. Engelking: General Topology.Revised and completed edition, Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [2] Y. Kodama and K. Nagami: Theory of General Topology.Iwanami, Tokyo, 1974. (Japanese)
Reference: [3] E. Michael: $J$-spaces.Top. Appl. 102 (2000), 315–339. Zbl 0942.54020, MR 1745451
Reference: [4] E. Michael: A note on closed maps and compact sets.Israel Math. J. 2 (1964), 173–176. Zbl 0136.19303, MR 0177396, 10.1007/BF02759940
Reference: [5] E. Michael: A survey of $J$-spaces.Proceeding of the Ninth Prague Topological Symposium Contributed papers from the Symposium held in Prague Czech Republic, August 19–25, 2001, pp. 191–193. MR 1906840
Reference: [6] J. R. Munkres: Topology.Prentice-Hall, Englewood Cliffs, NJ, 1975. Zbl 0306.54001, MR 0464128
Reference: [7] K. Nowinski: Closed mappings and the Freudenthal compactification.Fund. Math. 76 (1972), 71–83. Zbl 0235.54023, MR 0324628, 10.4064/fm-76-1-71-83
Reference: [8] L. A. Steen and J. A. Seebach, Jr: Counterexamples in Topology.Springer-Verlag, New York, 1978. MR 0507446
.

Files

Files Size Format View
CzechMathJ_57-2007-4_9.pdf 306.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo