Previous |  Up |  Next

Article

Keywords:
strong separativity; exchange ring; regular ring
Summary:
An exchange ring $R$ is strongly separative provided that for all finitely generated projective right $R$-modules $A$ and $B$, $A\oplus A\cong A \oplus B\Rightarrow A\cong B$. We prove that an exchange ring $R$ is strongly separative if and only if for any corner $S$ of $R$, $aS+bS=S$ implies that there exist $u,v\in S$ such that $au=bv$ and $Su+Sv=S$ if and only if for any corner $S$ of $R$, $aS+bS=S$ implies that there exists a right invertible matrix $\begin{pmatrix} a&b\\ *&* \end{pmatrix} \in M_2(S)$. The dual assertions are also proved.
References:
[1] P. Ara: Extensions of exchange rings. J.  Algebra 197 (1997), 409–423. DOI 10.1006/jabr.1997.7116 | MR 1483771 | Zbl 0890.16003
[2] P.  Ara, K. R.  Goodearl, K. C.  O’Meara, E.  Pardo: Diagonalization of matrices over regular rings. Linear Algebra Appl. 265 (1997), 147–163. MR 1466896
[3] P.  Ara, K. R.  Goodearl, K. C.  O’Meara, E.  Pardo: Separative cancellation for projective modules over exchange rings. Isr. J.  Math. 105 (1998), 105–137. DOI 10.1007/BF02780325 | MR 1639739
[4] P.  Ara, K. C.  O’Meara, D. V.  Tyukavkin: Cancellation of projective modules over regular rings with comparability. J. Pure Appl. Algebra 107 (1996), 19–38. MR 1377653
[5] G.  Brookfield: Direct sum cancellation of Noetherian modules. J.  Algebra 200 (1998), 207–224. DOI 10.1006/jabr.1997.7221 | MR 1603271 | Zbl 0899.16002
[6] H.  Chen: Exchange rings over which every regular matrix admits diagonal reduction. J.  Algebra Appl. 3 (2004), 207–217. DOI 10.1142/S0219498804000770 | MR 2069262 | Zbl 1072.16004
[7] K. R.  Goodearl: Von Neumann Regular Rings. Pitman, London-San Francisco-Melbourne, 1979; Krieger, Malabar (2nd edition), 1991. MR 0533669 | Zbl 0411.16007
[8] K. R.  Goodearl: Von Neumann regular rings and direct sum decomposition problems. Abelian Groups and Modules, Kluwer, Dordrecht, 1995, pp. 249–255. MR 1378203 | Zbl 0841.16008
[9] P.  Menal, J.  Moncasi: On regular rings with stable range  $2$. J.  Pure Appl. Algebra 24 (1982), 25–40. DOI 10.1016/0022-4049(82)90056-1 | MR 0647578
[10] W. K.  Nicholson: On exchange rings. Commun. Algebra 25 (1997), 1917–1918. DOI 10.1080/00927879708825962 | MR 1446139 | Zbl 0883.16003
[11] K. C.  O’Meara, C.  Vinsonhaler: Separative cancellation and multiple isomorphism in torsion-free Abelian groups. J. Algebra 221 (1999), 536–550. MR 1728395
[12] E.  Pardo: Comparability, separativity and exchange rings. Commun. Algebra 24 (1996), 2915–2929. DOI 10.1080/00927879608825721 | MR 1396864 | Zbl 0859.16001
[13] A. A.  Tuganbaev: Rings Close to Regular. Kluwer, Dordrecht, 2002. MR 1958361 | Zbl 1120.16012
[14] H.  Zhang, W.  Tong: The cancellable range of rings. Arch. Math. 85 (2005), 327–334. DOI 10.1007/s00013-005-1363-5 | MR 2174230
Partner of
EuDML logo