Title:
|
Strong separativity over exchange rings (English) |
Author:
|
Chen, Huanyin |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
58 |
Issue:
|
2 |
Year:
|
2008 |
Pages:
|
417-428 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
An exchange ring $R$ is strongly separative provided that for all finitely generated projective right $R$-modules $A$ and $B$, $A\oplus A\cong A \oplus B\Rightarrow A\cong B$. We prove that an exchange ring $R$ is strongly separative if and only if for any corner $S$ of $R$, $aS+bS=S$ implies that there exist $u,v\in S$ such that $au=bv$ and $Su+Sv=S$ if and only if for any corner $S$ of $R$, $aS+bS=S$ implies that there exists a right invertible matrix $\begin{pmatrix} a&b\\ *&* \end{pmatrix} \in M_2(S)$. The dual assertions are also proved. (English) |
Keyword:
|
strong separativity |
Keyword:
|
exchange ring |
Keyword:
|
regular ring |
MSC:
|
16D70 |
MSC:
|
16E50 |
MSC:
|
19B10 |
MSC:
|
19E99 |
idZBL:
|
Zbl 1166.16002 |
idMR:
|
MR2411098 |
. |
Date available:
|
2009-09-24T11:55:41Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128266 |
. |
Reference:
|
[1] P. Ara: Extensions of exchange rings.J. Algebra 197 (1997), 409–423. Zbl 0890.16003, MR 1483771, 10.1006/jabr.1997.7116 |
Reference:
|
[2] P. Ara, K. R. Goodearl, K. C. O’Meara, E. Pardo: Diagonalization of matrices over regular rings.Linear Algebra Appl. 265 (1997), 147–163. MR 1466896 |
Reference:
|
[3] P. Ara, K. R. Goodearl, K. C. O’Meara, E. Pardo: Separative cancellation for projective modules over exchange rings.Isr. J. Math. 105 (1998), 105–137. MR 1639739, 10.1007/BF02780325 |
Reference:
|
[4] P. Ara, K. C. O’Meara, D. V. Tyukavkin: Cancellation of projective modules over regular rings with comparability.J. Pure Appl. Algebra 107 (1996), 19–38. MR 1377653 |
Reference:
|
[5] G. Brookfield: Direct sum cancellation of Noetherian modules.J. Algebra 200 (1998), 207–224. Zbl 0899.16002, MR 1603271, 10.1006/jabr.1997.7221 |
Reference:
|
[6] H. Chen: Exchange rings over which every regular matrix admits diagonal reduction.J. Algebra Appl. 3 (2004), 207–217. Zbl 1072.16004, MR 2069262, 10.1142/S0219498804000770 |
Reference:
|
[7] K. R. Goodearl: Von Neumann Regular Rings.Pitman, London-San Francisco-Melbourne, 1979; Krieger, Malabar (2nd edition), 1991. Zbl 0411.16007, MR 0533669 |
Reference:
|
[8] K. R. Goodearl: Von Neumann regular rings and direct sum decomposition problems.Abelian Groups and Modules, Kluwer, Dordrecht, 1995, pp. 249–255. Zbl 0841.16008, MR 1378203 |
Reference:
|
[9] P. Menal, J. Moncasi: On regular rings with stable range $2$.J. Pure Appl. Algebra 24 (1982), 25–40. MR 0647578, 10.1016/0022-4049(82)90056-1 |
Reference:
|
[10] W. K. Nicholson: On exchange rings.Commun. Algebra 25 (1997), 1917–1918. Zbl 0883.16003, MR 1446139, 10.1080/00927879708825962 |
Reference:
|
[11] K. C. O’Meara, C. Vinsonhaler: Separative cancellation and multiple isomorphism in torsion-free Abelian groups.J. Algebra 221 (1999), 536–550. MR 1728395 |
Reference:
|
[12] E. Pardo: Comparability, separativity and exchange rings.Commun. Algebra 24 (1996), 2915–2929. Zbl 0859.16001, MR 1396864, 10.1080/00927879608825721 |
Reference:
|
[13] A. A. Tuganbaev: Rings Close to Regular.Kluwer, Dordrecht, 2002. Zbl 1120.16012, MR 1958361 |
Reference:
|
[14] H. Zhang, W. Tong: The cancellable range of rings.Arch. Math. 85 (2005), 327–334. MR 2174230, 10.1007/s00013-005-1363-5 |
. |