Previous |  Up |  Next

Article

Title: Strong separativity over exchange rings (English)
Author: Chen, Huanyin
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 58
Issue: 2
Year: 2008
Pages: 417-428
Summary lang: English
.
Category: math
.
Summary: An exchange ring $R$ is strongly separative provided that for all finitely generated projective right $R$-modules $A$ and $B$, $A\oplus A\cong A \oplus B\Rightarrow A\cong B$. We prove that an exchange ring $R$ is strongly separative if and only if for any corner $S$ of $R$, $aS+bS=S$ implies that there exist $u,v\in S$ such that $au=bv$ and $Su+Sv=S$ if and only if for any corner $S$ of $R$, $aS+bS=S$ implies that there exists a right invertible matrix $\begin{pmatrix} a&b\\ *&* \end{pmatrix} \in M_2(S)$. The dual assertions are also proved. (English)
Keyword: strong separativity
Keyword: exchange ring
Keyword: regular ring
MSC: 16D70
MSC: 16E50
MSC: 19B10
MSC: 19E99
idZBL: Zbl 1166.16002
idMR: MR2411098
.
Date available: 2009-09-24T11:55:41Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/128266
.
Reference: [1] P. Ara: Extensions of exchange rings.J.  Algebra 197 (1997), 409–423. Zbl 0890.16003, MR 1483771, 10.1006/jabr.1997.7116
Reference: [2] P.  Ara, K. R.  Goodearl, K. C.  O’Meara, E.  Pardo: Diagonalization of matrices over regular rings.Linear Algebra Appl. 265 (1997), 147–163. MR 1466896
Reference: [3] P.  Ara, K. R.  Goodearl, K. C.  O’Meara, E.  Pardo: Separative cancellation for projective modules over exchange rings.Isr. J.  Math. 105 (1998), 105–137. MR 1639739, 10.1007/BF02780325
Reference: [4] P.  Ara, K. C.  O’Meara, D. V.  Tyukavkin: Cancellation of projective modules over regular rings with comparability.J. Pure Appl. Algebra 107 (1996), 19–38. MR 1377653
Reference: [5] G.  Brookfield: Direct sum cancellation of Noetherian modules.J.  Algebra 200 (1998), 207–224. Zbl 0899.16002, MR 1603271, 10.1006/jabr.1997.7221
Reference: [6] H.  Chen: Exchange rings over which every regular matrix admits diagonal reduction.J.  Algebra Appl. 3 (2004), 207–217. Zbl 1072.16004, MR 2069262, 10.1142/S0219498804000770
Reference: [7] K. R.  Goodearl: Von Neumann Regular Rings.Pitman, London-San Francisco-Melbourne, 1979; Krieger, Malabar (2nd edition), 1991. Zbl 0411.16007, MR 0533669
Reference: [8] K. R.  Goodearl: Von Neumann regular rings and direct sum decomposition problems.Abelian Groups and Modules, Kluwer, Dordrecht, 1995, pp. 249–255. Zbl 0841.16008, MR 1378203
Reference: [9] P.  Menal, J.  Moncasi: On regular rings with stable range  $2$.J.  Pure Appl. Algebra 24 (1982), 25–40. MR 0647578, 10.1016/0022-4049(82)90056-1
Reference: [10] W. K.  Nicholson: On exchange rings.Commun. Algebra 25 (1997), 1917–1918. Zbl 0883.16003, MR 1446139, 10.1080/00927879708825962
Reference: [11] K. C.  O’Meara, C.  Vinsonhaler: Separative cancellation and multiple isomorphism in torsion-free Abelian groups.J. Algebra 221 (1999), 536–550. MR 1728395
Reference: [12] E.  Pardo: Comparability, separativity and exchange rings.Commun. Algebra 24 (1996), 2915–2929. Zbl 0859.16001, MR 1396864, 10.1080/00927879608825721
Reference: [13] A. A.  Tuganbaev: Rings Close to Regular.Kluwer, Dordrecht, 2002. Zbl 1120.16012, MR 1958361
Reference: [14] H.  Zhang, W.  Tong: The cancellable range of rings.Arch. Math. 85 (2005), 327–334. MR 2174230, 10.1007/s00013-005-1363-5
.

Files

Files Size Format View
CzechMathJ_58-2008-2_8.pdf 276.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo