Previous |  Up |  Next

Article

Title: Some results on the growth properties of Wronskians (English)
Author: Datta, Sanjib Kumar
Author: Jha, Arindam
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 45
Issue: 1
Year: 2009
Pages: 59-69
Summary lang: English
.
Category: math
.
Summary: The aim of this paper paper is to study the comparative growth properties of the composition of entire and meromorphic functions and wronskians generated by them improving some earlier results. (English)
Keyword: transcendental entire and meromorphic function
Keyword: Wronskian
Keyword: proximate lower order
Keyword: composition
Keyword: growth
MSC: 30D30
MSC: 30D35
idZBL: Zbl 1212.30115
idMR: MR2591661
.
Date available: 2009-06-25T13:47:06Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/128287
.
Reference: [1] Bergweiler, W.: On the Nevanlinna characteristic of a composite function.Complex Variables 10 (1988), 225–236. Zbl 0628.30035, MR 0998234, 10.1080/17476938808814301
Reference: [2] Bergweiler, W.: On the growth rate of composite meromorphic functions.Complex Variables 14 (1990), 187–196. Zbl 0648.30022, MR 1048718, 10.1080/17476939008814417
Reference: [3] Hayman, W. K.: Meromorphic Functions.The Clarendon Press, Oxford, 1964. Zbl 0115.06203, MR 0164038
Reference: [4] Lahiri, I.: Generalised proximate order of meromorphic functions.Mat. Vesnik 41 (1989), 9–16. Zbl 0698.30028, MR 1027311
Reference: [5] Lahiri, I., Banerjee, A.: Value distribution of a Wronskian.Port. Math. (N.S.) 61 (2) (2004), 161–175. Zbl 1063.30030, MR 2066672
Reference: [6] Lin, Q., Dai, C.: On a conjecture of Shah concerning small functions.Kexue Tongbao (Chinese) 31 (4) (1986), 220–224, (English ed.). MR 0853493
Reference: [7] Niino, K., Yang, C. C.: Some growth relationships on factors of two composite entire functions.Factorization theory of meromorphic functions and related topics, Marcel Dekker, Inc. (New York and Basel), 1982, pp. 95–99. Zbl 0495.30023, MR 0666713
Reference: [8] Shah, S. M.: In proximate orders of integral functions.Bull. Amer. Math. Soc. 52 (1946), 326–328. MR 0015169, 10.1090/S0002-9904-1946-08572-9
Reference: [9] Shah, S. M.: A note on lower proximate orders.J. Indian Math. Soc. (N.S.) 12 (1948), 31–32. Zbl 0031.02202, MR 0028406
.

Files

Files Size Format View
ArchMathRetro_045-2009-1_5.pdf 427.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo