Previous |  Up |  Next

Article

Title: On rings all of whose modules are retractable (English)
Author: Ecevit, Şule
Author: Koşan, Muhammet Tamer
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 45
Issue: 1
Year: 2009
Pages: 71-74
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a ring. A right $R$-module $M$ is said to be retractable if $\mathbb{T}{Hom}_R(M,N)\ne 0$ whenever $N$ is a non-zero submodule of $M$. The goal of this article is to investigate a ring $R$ for which every right R-module is retractable. Such a ring will be called right mod-retractable. We proved that $(1)$ The ring $\prod _{i \in \mathcal{I}} R_i$ is right mod-retractable if and only if each $R_i$ is a right mod-retractable ring for each $i\in \mathcal{I}$, where $\mathcal{I}$ is an arbitrary finite set. $(2)$ If $R[x]$ is a mod-retractable ring then $R$ is a mod-retractable ring. (English)
Keyword: retractable module
Keyword: Morita invariant property
MSC: 16D10
MSC: 16D50
MSC: 16D70
MSC: 16D80
MSC: 16D90
MSC: 16S36
idZBL: Zbl 1203.16006
idMR: MR2591662
.
Date available: 2009-06-25T13:53:38Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/128291
.
Reference: [1] Khuri, S. M.: Endomorphism rings and lattice isomorphism.J. Algebra 56 (2) (1979), 401–408. MR 0528584, 10.1016/0021-8693(79)90346-6
Reference: [2] Khuri, S. M.: Endomorphism rings of nonsingular modules.Ann. Sci. Math. Québec 4 (2) (1980), 145–152. Zbl 0451.16021, MR 0599052
Reference: [3] Khuri, S. M.: The endomorphism rings of a non-singular retractable module.East-West J. Math. 2 (2) (2000), 161–170. MR 1825452
Reference: [4] Rizvi, S. T., Roman, C. S.: Baer and quasi-Baer Modules.Comm. Algebra 32 (1) (2004), 103–123. Zbl 1072.16007, MR 2036224, 10.1081/AGB-120027854
.

Files

Files Size Format View
ArchMathRetro_045-2009-1_6.pdf 400.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo