Title:
|
Fundamental group of $\operatorname{Symp}(M,\omega )$ with no circle action (English) |
Author:
|
Kędra, Jarek |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
45 |
Issue:
|
1 |
Year:
|
2009 |
Pages:
|
75-78 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We show that $\pi _1(\operatorname{Symp}(M, \omega ))$ can be nontrivial for $M$ that does not admit any symplectic circle action. (English) |
Keyword:
|
symplectomorphism |
Keyword:
|
circle action |
MSC:
|
53C15 |
MSC:
|
53D35 |
MSC:
|
57S05 |
idZBL:
|
Zbl 1212.57016 |
idMR:
|
MR2591663 |
. |
Date available:
|
2009-06-25T13:47:31Z |
Last updated:
|
2013-09-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128290 |
. |
Reference:
|
[1] Ahara, K., Hattori, A.: $4$-dimensional symplectic $S^1$-manifolds admitting moment map.J. Fac. Sci. Univ. Tokyo Sect. IA Math. 38 (2) (1991), 251–298. MR 1127083 |
Reference:
|
[2] Anjos, S.: Homotopy type of symplectomorphism groups of $S^2\times S^2$.Geom. Topol. 6 (2002), 195–218, (electronic). Zbl 1023.57021, MR 1914568, 10.2140/gt.2002.6.195 |
Reference:
|
[3] Audin, M.: Torus actions on symplectic manifolds.Progress in Mathematics, vol. 93, Birkhäuser Verlag, Basel, revised edition, 2004. Zbl 1062.57040, MR 2091310 |
Reference:
|
[4] Baldridge, S.: Seiberg-Witten vanishing theorem for $S^1$-manifolds with fixed points.Pacific J. Math. 217 (1) (2004), 1–10. Zbl 1071.57027, MR 2105762, 10.2140/pjm.2004.217.1 |
Reference:
|
[5] Karshon, Y.: Periodic Hamiltonian flows on four-dimensional manifolds.Mem. Amer. Math. Soc. 141 (672) (1999), viii+71. Zbl 0982.70011, MR 1612833 |
Reference:
|
[6] Kędra, J.: Evaluation fibrations and topology of symplectomorphisms.Proc. Amer. Math. Soc. 133 (1) (2005), 305–312, (electronic). Zbl 1053.55011, MR 2086223, 10.1090/S0002-9939-04-07507-0 |
Reference:
|
[7] Lalonde, F., Pinsonnault, M.: The topology of the space of symplectic balls in rational 4-manifolds.Duke Math. J. 122 (2) (2004), 347–397. Zbl 1063.57023, MR 2053755, 10.1215/S0012-7094-04-12223-7 |
Reference:
|
[8] McDuff, D.: Symplectomorphism Groups and almost Complex Structures.In: Essays on geometry and related topics, Vol. 1, 2, 2001, volume 38 of Monogr. Enseign. Math., pp. 527–556. Zbl 1010.53064, MR 1929338 |
Reference:
|
[9] McDuff, D.: The symplectomorphism group of a blow up.Geom. Dedicata 132 (2008), 1–29. Zbl 1155.53055, MR 2396906, 10.1007/s10711-007-9175-3 |
Reference:
|
[10] McDuff, D., Salamon, D.: Introduction to symplectic topology.Oxford Math. Monogr. (1998), Second edition. MR 1702941 |
. |