Previous |  Up |  Next

Article

Title: Fundamental group of $\operatorname{Symp}(M,\omega )$ with no circle action (English)
Author: Kędra, Jarek
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 45
Issue: 1
Year: 2009
Pages: 75-78
Summary lang: English
.
Category: math
.
Summary: We show that $\pi _1(\operatorname{Symp}(M, \omega ))$ can be nontrivial for $M$ that does not admit any symplectic circle action. (English)
Keyword: symplectomorphism
Keyword: circle action
MSC: 53C15
MSC: 53D35
MSC: 57S05
idZBL: Zbl 1212.57016
idMR: MR2591663
.
Date available: 2009-06-25T13:47:31Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/128290
.
Reference: [1] Ahara, K., Hattori, A.: $4$-dimensional symplectic $S^1$-manifolds admitting moment map.J. Fac. Sci. Univ. Tokyo Sect. IA Math. 38 (2) (1991), 251–298. MR 1127083
Reference: [2] Anjos, S.: Homotopy type of symplectomorphism groups of $S^2\times S^2$.Geom. Topol. 6 (2002), 195–218, (electronic). Zbl 1023.57021, MR 1914568, 10.2140/gt.2002.6.195
Reference: [3] Audin, M.: Torus actions on symplectic manifolds.Progress in Mathematics, vol. 93, Birkhäuser Verlag, Basel, revised edition, 2004. Zbl 1062.57040, MR 2091310
Reference: [4] Baldridge, S.: Seiberg-Witten vanishing theorem for $S^1$-manifolds with fixed points.Pacific J. Math. 217 (1) (2004), 1–10. Zbl 1071.57027, MR 2105762, 10.2140/pjm.2004.217.1
Reference: [5] Karshon, Y.: Periodic Hamiltonian flows on four-dimensional manifolds.Mem. Amer. Math. Soc. 141 (672) (1999), viii+71. Zbl 0982.70011, MR 1612833
Reference: [6] Kędra, J.: Evaluation fibrations and topology of symplectomorphisms.Proc. Amer. Math. Soc. 133 (1) (2005), 305–312, (electronic). Zbl 1053.55011, MR 2086223, 10.1090/S0002-9939-04-07507-0
Reference: [7] Lalonde, F., Pinsonnault, M.: The topology of the space of symplectic balls in rational 4-manifolds.Duke Math. J. 122 (2) (2004), 347–397. Zbl 1063.57023, MR 2053755, 10.1215/S0012-7094-04-12223-7
Reference: [8] McDuff, D.: Symplectomorphism Groups and almost Complex Structures.In: Essays on geometry and related topics, Vol. 1, 2, 2001, volume 38 of Monogr. Enseign. Math., pp. 527–556. Zbl 1010.53064, MR 1929338
Reference: [9] McDuff, D.: The symplectomorphism group of a blow up.Geom. Dedicata 132 (2008), 1–29. Zbl 1155.53055, MR 2396906, 10.1007/s10711-007-9175-3
Reference: [10] McDuff, D., Salamon, D.: Introduction to symplectic topology.Oxford Math. Monogr. (1998), Second edition. MR 1702941
.

Files

Files Size Format View
ArchMathRetro_045-2009-1_7.pdf 409.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo