Title:
|
A generalization of Steenrod’s approximation theorem (English) |
Author:
|
Wockel, Christoph |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
45 |
Issue:
|
2 |
Year:
|
2009 |
Pages:
|
95-104 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper we aim for a generalization of the Steenrod Approximation Theorem from [16, Section 6.7], concerning a smoothing procedure for sections in smooth locally trivial bundles. The generalization is that we consider locally trivial smooth bundles with a possibly infinite-dimensional typical fibre. The main result states that a continuous section in a smooth locally trivial bundles can always be smoothed out in a very controlled way (in terms of the graph topology on spaces of continuous functions), preserving the section on regions where it is already smooth. (English) |
Keyword:
|
infinite-dimensional manifold |
Keyword:
|
infinite-dimensional smooth bundle |
Keyword:
|
smoothing of continuous sections |
Keyword:
|
density of smooth in continuous sections |
Keyword:
|
topology on spaces of continuous functions |
MSC:
|
57R10 |
MSC:
|
57R12 |
MSC:
|
58B05 |
idZBL:
|
Zbl 1212.58005 |
idMR:
|
MR2591666 |
. |
Date available:
|
2009-06-25T18:16:46Z |
Last updated:
|
2013-09-19 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128295 |
. |
Reference:
|
[1] Bourbaki, N.: General topology.Elements of Mathematics (Berlin) (1998), Springer-Verlag, Berlin, translated from the French. Zbl 0894.54001 |
Reference:
|
[2] Dugundji, J.: Topology.Allyn and Bacon Inc., Boston, 1966. Zbl 0144.21501, MR 0193606 |
Reference:
|
[3] Glöckner, H.: Infinite-dimensional Lie groups without completeness restrictions.Geometry and Analysis on Finite- and Infinite-Dimensional Lie Groups (Bȩdlewo, 2000), vol. 55, Banach Center Publ., 43–59, Polish Acad. Sci., Warsaw, 2002. Zbl 1020.58009, MR 1911979 |
Reference:
|
[4] Glöckner, H., Neeb, K.-H.: Infinite-dimensional Lie groups.Basic Theory and Main Examples, volume I, Springer-Verlag, 2009, in preparation. |
Reference:
|
[5] Hamilton, R. S.: The inverse function theorem of Nash and Moser.Bull. Amer. Math. Soc. (N.S.) 7 (1) (1982), 65–222. Zbl 0499.58003, MR 0656198, 10.1090/S0273-0979-1982-15004-2 |
Reference:
|
[6] Hirsch, M. W.: Differential Topology.Springer-Verlag, New York, 1976. Zbl 0356.57001, MR 0448362 |
Reference:
|
[7] Keller, H. H.: Differential calculus in locally convex spaces.Lecture Notes in Math., vol. 417, Springer-Verlag, Berlin, 1974. Zbl 0293.58001, MR 0440592 |
Reference:
|
[8] Kriegl, A., Michor, P. W.: Smooth and continuous homotopies into convenient manifolds agree.unpublished preprint, 2002, available from http://www.mat.univie.ac.at/$\sim $michor/. |
Reference:
|
[9] Kriegl, A., Michor, P. W.: The Convenient Setting of Global Analysis.Math. Surveys Monogr., vol. 53, Amer. Math. Soc., 1997. Zbl 0889.58001, MR 1471480 |
Reference:
|
[10] Lee, J. M.: Introduction to smooth manifolds.Grad. Texts in Math., vol. 218, Springer-Verlag, New York, 2003. MR 1930091, 10.1007/978-0-387-21752-9 |
Reference:
|
[11] Michor, P. W.: Manifolds of Differentiable Mappings.Shiva Mathematics Series, vol. 3, Shiva Publishing Ltd., Nantwich, 1980, out of print, online available from http://www.mat.univie.ac.at/$\sim $michor/. Zbl 0433.58001, MR 0583436 |
Reference:
|
[12] Milnor, J.: Remarks on infinite-dimensional Lie groups.Relativity, Groups and Topology, II (Les Houches, 1983), North-Holland, Amsterdam, 1984, pp. 1007–1057. Zbl 0594.22009, MR 0830252 |
Reference:
|
[13] Müller, C., Wockel, C.: Equivalences of smooth and continuous principal bundles with infinite-dimensional structure group.Adv. Geom., to appear, 2009, arXiv:math/0604142. |
Reference:
|
[14] Naimpally, S. A.: Graph topology for function spaces.Trans. Amer. Math. Soc. 123 (1966), 267–272. Zbl 0151.29703, MR 0192466, 10.1090/S0002-9947-1966-0192466-4 |
Reference:
|
[15] Neeb, K.-H.: Central extensions of infinite-dimensional Lie groups.Ann. Inst. Fourier (Grenoble) 52 (5) (2002), 1365–1442. Zbl 1019.22012, MR 1935553, 10.5802/aif.1921 |
Reference:
|
[16] Steenrod, N.: The Topology of Fibre Bundles.Princeton Math. Ser. 14 (1951). Zbl 0054.07103, MR 0039258 |
Reference:
|
[17] Wockel, C.: Smooth extensions and spaces of smooth and holomorphic mappings.J. Geom. Symmetry Phys. 5 (2006), 118–126. Zbl 1108.58006, MR 2269885 |
. |