Previous |  Up |  Next

Article

Title: Parallel methods in image recovery by projections onto convex sets (English)
Author: Crombez, G.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 42
Issue: 3
Year: 1992
Pages: 445-450
.
Category: math
.
MSC: 47A50
MSC: 47H09
MSC: 47H10
MSC: 47N99
MSC: 52A07
MSC: 65J05
MSC: 65Y05
idZBL: Zbl 0789.65039
idMR: MR1179306
DOI: 10.21136/CMJ.1992.128355
.
Date available: 2009-09-24T09:22:50Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/128355
.
Reference: [1] L. M. Bregman: Finding the common point of convex sets by the method of successive projection.Dokl. Akad. Nauk SSSR 162 (1965), 487–490. MR 0198341
Reference: [2] G. Crombez: Image recovery by convex combinations of projections.J. Math. Anal. Appl. 155 (1991), 413–419. Zbl 0752.65045, MR 1097291, 10.1016/0022-247X(91)90010-W
Reference: [3] M. I. Sezan, H. Stark: Image restoration by the method of convex projections: part 2 — applications and numerical results.IEEE Trans. Medical Imaging 1 (1982), 95–102. 10.1109/TMI.1982.4307556
Reference: [4] M. I. Sezan, H. Stark: Applications of convex projection theory to image recovery in tomography and related areas.Image recovery: theory and application, Academic Press Inc. New York, 1987. MR 0896707
Reference: [5] D. C. Youla, H. Webb: Image restoration by the method of convex projections: part 1 — theory.IEEE Trans. Medical Imaging 1 (1982), 81–94. 10.1109/TMI.1982.4307555
Reference: [6] D. C. Youla: Mathematical theory of image restoration by the method of convex projections.Image recovery: theory and application, Academic Press Inc. New York, 1987.
.

Files

Files Size Format View
CzechMathJ_42-1992-3_5.pdf 613.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo