Previous |  Up |  Next

Article

References:
[1] Evans, T., Ganter, B.: Varieties with modular subalgebra lattices. Bull. Austral. Math. Soc. 28 (1983), no. 2, 247–254. DOI 10.1017/S0004972700020918 | MR 0729011
[2] Pálfy, P. P.: Modular subalgebra lattices. Algebra Universalis 27 (1990), no. 2, 220–229. DOI 10.1007/BF01182454 | MR 1037863
[3] Shevrin, L. N., Ovsyannikov, A. Ya.: Semigroups and their subsemigroup. Semigroup Forum 27 (1983), no. 1–4, 1-154. DOI 10.1007/BF02572737 | MR 0714671
[4] Chajda, I.: Lattices of compatible relations. Arch. Math. (Brno) 13 (1977), 89–96. MR 0463081 | Zbl 0372.08002
[5] Chajda, I, Zelinka, B.: Lattices of tolerances. Čas. pěst. mat. 102 (1977), 10–24. MR 0450152
[6] Chajda, I: Varieties with modular and distributive lattices of symmetric or reflexive. Czechoslovak Math. J. (to appear). Zbl 0778.08004
[7] Clifford, A. H., Preston G. B.: The algebraic theory of semigroups. Vol. I. Am. Math. Soc., 1961. MR 0132791
[8] Petrich, M.: Introduction to Semigroups. Merill Publishing Company, 1973. MR 0393206 | Zbl 0321.20037
[9] Lukács, E., Pálfy, P. P.: Modularity of the subgroup lattice of a direct square. Arch. Math. (Basel) 46 (1986), no. 1, 18–19. DOI 10.1007/BF01197131 | MR 0829806
[10] Petrich, M.: Lectures in semigroups. Akademie-Verlag, Berlin, 1977. MR 0447437 | Zbl 0369.20036
[11] Pondělíček, B.: Tolerance modular varieties of semigroups. Czechoslovak Math. J. 40 (115) (1990), 441–452. MR 1065023
[12] Pondělíček, B.: Torerance distributive and tolerance boolean varieties of semigroups. Czechoslovak Math. J. 36 (111) (1986), 617–622. MR 0863191
[13] Fennemore, C. F.: All varieties of bands. I, II. Math. Nachr. 48 (1971), 237–252, 253–262. DOI 10.1002/mana.19710480118 | MR 0294535
Partner of
EuDML logo