Previous |  Up |  Next

Article

References:
[1] P. G. Dixon: Approximate indentities in Banach Algebras. Math. Proc. of the Cambridge Phil. Soc. 107 (1990), 557–571. MR 1041485
[2] P. Fletcher and W. F. Lindgren: A note on spaces of second category. Arch. Math. 24 (1973), 186–187. DOI 10.1007/BF01228197 | MR 0315663
[3] J. R. Folgelgren and R. A. McCoy: Some topological properties defined by homeomorphism groups. Arch. Math. 22 (1971), 528–533. DOI 10.1007/BF01222613 | MR 0300259
[4] J. Kelley: General topology. Van Nostrand, Princeton, 1955. MR 0070144 | Zbl 0066.16604
[5] L. Máté: On the continuity of Causal Operators and the Pták-Stein Theorem. Periodica Math. Hung. 20 (1989), 219–230. DOI 10.1007/BF01848125 | MR 1028959
[6] L. Máté: Remarks on the Pták-Stein Theorem. Periodica Math. Hung. 23 (1991), 59–63. DOI 10.1007/BF02260394
[7] M. Neumann and V. Pták: Automatic continuity, local type and causality. Studia Math. 82 (1985), 61–90. DOI 10.4064/sm-82-1-61-90 | MR 0809773
[8] D. Noll: The preservation of Baire Category under preimages. Proc. Amer. Math. Soc. 107 (1989), 847–854. DOI 10.1090/S0002-9939-1989-0982407-2 | MR 0982407 | Zbl 0687.54012
[9] V. Pták: A uniform boundedness theorem and mappings into spaces of linear operators. Studia Math. 31 (1968), 425–431. DOI 10.4064/sm-31-4-425-431 | MR 0236672
[10] J. Stein: Several theorems on boundedness and equicontinuity. Proc. Amer. Math. Soc. 26 (1971), 415–419. MR 0270124
[11] J. Stein: Some observations on local uniform boundedness principles. Czech. Math. J. 41 (1991), 64–74. MR 1087624 | Zbl 0791.46012
Partner of
EuDML logo