Previous |  Up |  Next

Article

References:
[1] Chajda, I.: Weak coherence of congruences. Czechoslovak Math. J. 41 (1991), 149–154. MR 1087635 | Zbl 0796.08003
[2] Clark, D.M., Fleischer, I.: $A \times A$ congruence coherent implies $A$ congruence permutable. Algebra Univ. 24 (1987), 192. DOI 10.1007/BF01188397 | MR 0921544
[3] Csákány, B.: Characterizations of regular varieties. Acta Sci. Math. 31 (1970), 187–189. MR 0272697
[4] Davey, B.A., Miles, K.R., Schumann, V.J.: Quasi-identities, Mal’cev conditions and congruence regularity. Acta Sci. Math. 51 (1987), 39–55. MR 0911557
[5] Duda, J.: $A \times A$ congruence coherent implies $A$ congruence regular. Algebra Univ. 28 (1991), 301–302. DOI 10.1007/BF01190858 | MR 1106060 | Zbl 0735.08001
[6] Duda, J.: Mal’cev conditions for varieties of subregular algebras. Acta Sci. Math. 51 (1987), 329–334. MR 0940937 | Zbl 0647.08002
[7] Fichtner, K.: Varieties of universal algebras with ideals. Mat. Sbornik 75(117) (1968), 445–453. MR 0222001 | Zbl 0213.29602
[8] Fraser, G.A., Horn, A.: Congruence relations in direct products. Proc. Amer. Math. Soc. 26 (1970), 390–394. DOI 10.1090/S0002-9939-1970-0265258-1 | MR 0265258
[9] Geiger, D.: Coherent algebras. Notices Amer. Math. Soc. 21 (1974), A-436.
[10] Hagemann, J.: On regular and weakly regular congruences. Preprint 75 (1973), TH-Darmstadt.
[11] Mal’cev, A.I.: On the general theory of algebraic systems. Mat. Sbornik 35(77) (1954), 3–20.
[12] Timm, J.: On regular algebras. Colloq. Math. Soc. János Bolyai 17. Contributions to universal algebra, Szeged, 1975, pp. 503–514. MR 0491418
[13] Werner, H.: A Mal’cev condition for admissible relations. Algebra Univ 3 (1973), 263. DOI 10.1007/BF02945126 | MR 0330009 | Zbl 0276.08004
Partner of
EuDML logo