[2] Clark, D.M., Fleischer, I.:
$A \times A$ congruence coherent implies $A$ congruence permutable. Algebra Univ. 24 (1987), 192.
DOI 10.1007/BF01188397 |
MR 0921544
[3] Csákány, B.:
Characterizations of regular varieties. Acta Sci. Math. 31 (1970), 187–189.
MR 0272697
[4] Davey, B.A., Miles, K.R., Schumann, V.J.:
Quasi-identities, Mal’cev conditions and congruence regularity. Acta Sci. Math. 51 (1987), 39–55.
MR 0911557
[6] Duda, J.:
Mal’cev conditions for varieties of subregular algebras. Acta Sci. Math. 51 (1987), 329–334.
MR 0940937 |
Zbl 0647.08002
[7] Fichtner, K.:
Varieties of universal algebras with ideals. Mat. Sbornik 75(117) (1968), 445–453.
MR 0222001 |
Zbl 0213.29602
[9] Geiger, D.: Coherent algebras. Notices Amer. Math. Soc. 21 (1974), A-436.
[10] Hagemann, J.: On regular and weakly regular congruences. Preprint 75 (1973), TH-Darmstadt.
[11] Mal’cev, A.I.: On the general theory of algebraic systems. Mat. Sbornik 35(77) (1954), 3–20.
[12] Timm, J.:
On regular algebras. Colloq. Math. Soc. János Bolyai 17. Contributions to universal algebra, Szeged, 1975, pp. 503–514.
MR 0491418