Title:
|
The construction of $A$-solvable Abelian groups (English) |
Author:
|
Albrecht, Ulrich |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
44 |
Issue:
|
3 |
Year:
|
1994 |
Pages:
|
413-430 |
. |
Category:
|
math |
. |
MSC:
|
16D90 |
MSC:
|
16S50 |
MSC:
|
20K20 |
MSC:
|
20K25 |
MSC:
|
20K40 |
idZBL:
|
Zbl 0823.20056 |
idMR:
|
MR1288162 |
DOI:
|
10.21136/CMJ.1994.128480 |
. |
Date available:
|
2009-09-24T09:40:14Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/128480 |
. |
Reference:
|
[A3] Albrecht, U.: Faithful abelian groups of infinite rank.Proc. Amer. Math. Soc. 103 (1) (1988), 21–26. Zbl 0646.20042, MR 0938637, 10.1090/S0002-9939-1988-0938637-8 |
Reference:
|
[A1] Albrecht, U.: Endomorphism rings of faithfully flat abelian groups.Results in Mathematics 17 (1990), 179–201. Zbl 0709.20031, MR 1052585, 10.1007/BF03322457 |
Reference:
|
[A2] Albrecht, U.: Abelian groups $A$ such that the category of $A$-solvable groups is preabelian.Contemporary Mathematics 87 (1989), 117–131. Zbl 0691.20038, MR 0995270, 10.1090/conm/087/995270 |
Reference:
|
[A4] Albrecht, U.: Endomorphism rings and a generalization of torsion-freeness and purity.Communications in Algebra 17 (5) (1989), 1101–1135. Zbl 0691.20040, MR 0993391, 10.1080/00927878908823776 |
Reference:
|
[ACH] Albrecht, U.: Extension functors on the category of $A$-solvable abelian groups.Czech. Math. J. 41 (116) (1991), 685–694. Zbl 0776.20018, MR 1134957 |
Reference:
|
[AWM] Albrecht, U.: Endomorphism rings and Fuchs’ Problem 47.(to appear). |
Reference:
|
[AH] Albrecht, U., and Hausen, J.: Modules with the quasi-summand intersection property.Bull. Austral. Math. Soc. 44 (1991), 189–201. MR 1126356, 10.1017/S0004972700029610 |
Reference:
|
[AL] Arnold, D., and Lady, L.: Endomorphism rings and direct sums of torsion-free abelian groups.Trans. Amer. Math. Soc. 211 (1975), 225–237. MR 0417314, 10.1090/S0002-9947-1975-0417314-1 |
Reference:
|
[AM] Arnold, D., and Murley, E.: Abelian groups, $A$, such that $\mathop {\mathrm Hom}\nolimits (A,-)$ preserves direct sums of copies of $A$.Pac. J. of Math. 56 (1975), 7–20. MR 0376901, 10.2140/pjm.1975.56.7 |
Reference:
|
[DG] Dugas, M., and Göbel, R.: Every cotorsion-free ring is an endomorphism ring.Proc. London Math. Soc. 45 (1982), 319–336. MR 0670040 |
Reference:
|
[F] Faticoni, T.: Semi-local localization of rings and subdirect decomposition of modules.J. of Pure and Appl. Alg. 46 (1987), 137–163. 10.1016/0022-4049(87)90090-9 |
Reference:
|
[FG] Faticoni, T., and Goeters, P.: Examples of torsion-free abelian groups flat as modules over their endomorphism rings.Comm. in Algebra 19 (1991), 1–27. MR 1092548, 10.1080/00927879108824126 |
Reference:
|
[FG1] Faticoni, T., and Goeters, P.: On torsion-free $\mathop {\mathrm Ext}\nolimits $.Comm. in Algebra 16 (9) (1988), 1853–1876. MR 0952214 |
Reference:
|
[Fu] Fuchs, L.: Infinite Abelian Groups Vol. I/II.Academic Press, New York, London, 1970/73. MR 0255673 |
Reference:
|
[FR] Gruson, L., and Raynaud, M.: Criteres de platitude et de projectivite.Inv. Math. 13 (1971), 1–89. MR 0308104, 10.1007/BF01390094 |
Reference:
|
[H] Hausen, J.: Modules with the summand intersection property.Comm. in Algebra 17 (1989), 135–148. Zbl 0667.16020, MR 0970868, 10.1080/00927878908823718 |
Reference:
|
[R] Reid, J.: A note on torsion-free abelian groups of finite rank.Proc. Amer. Math. Soc. 13 (1962), 222–225. MR 0133356, 10.1090/S0002-9939-1962-0133356-4 |
Reference:
|
[ST] Stenström, B.: Rings of Quotients.Springer Verlag, Berlin, New York, Heidelberg, 1975. MR 0389953 |
Reference:
|
[W] Warfield, R.: Homomorphisms and duality for torsion-free groups.Math. Z. 107 (1968), 189–200. Zbl 0169.03602, MR 0237642, 10.1007/BF01110257 |
. |