Previous |  Up |  Next

Article

References:
[1] ADHIKARI S. D.-SARADHA N.-SHOREY T. N.-TIJDEMAN R.: Transcendental infinite sums. Indag. Math. (N.S.) 12 (2001), 1-14. MR 1908135 | Zbl 1032.11030
[2] DAVENPORT H.-ROTH K. F.: Rational approximations to algebraic numbers. Mathematika 2 (1955), 160-167. MR 0077577 | Zbl 0066.29302
[3] DUVERNEY D.: Transcendence of a fast converging series of rational numbers. Math. Proc. Cambridge Philos. Soc. 130 (2001), 193-207. MR 1806772 | Zbl 0999.11037
[4] HANČL J.: Transcendental sequences. Math. Slovaca 46 (1996), 177-179. MR 1427003 | Zbl 0888.11029
[5] HANČL J.: Two criteria for transcendental sequences. Matematiche (Catania) 56 (2002), 129-140. MR 1997731 | Zbl 1173.11338
[6] HANČL J.: Liouville sequences. Nagoya Math. J. 172 (2003), 173-187. MR 2019524 | Zbl 1056.11043
[7] NISHIOKA K.: Mahler Functions and Transcendence. Lecture Notes in Math. 1631, Springer, New York, 1996. MR 1439966 | Zbl 0876.11034
[8] NYBLOM M. A.: A theorem on transcendence of infinite series. Rocky Mountain J. Math. 30 (2000), 1111-1120. MR 1797832 | Zbl 1012.11063
[9] Encyclopaedia of Mathematical Sciences, Vol. 44- Number Theory IV. (A. N. Parshin, I. R. Shafarevich, eds.), Springer-Verlag, Berlin-Heidelberg, 1998. MR 1603604
Partner of
EuDML logo