Previous |  Up |  Next

Article

Title: Integration of real functions with respect to a $oplus$-measure (English)
Author: Kolesárová, Anna
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 46
Issue: 1
Year: 1996
Pages: 41-52
.
Category: math
.
MSC: 28A25
MSC: 28E10
idZBL: Zbl 0854.28009
idMR: MR1414408
.
Date available: 2009-09-25T11:12:28Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/128938
.
Reference: [1] DUBOIS D.-PRADE H.: Review of fuzzy set aggregation connectives.Inform. Sci. 36 (1985), 85-121. Zbl 0582.03040, MR 0813766
Reference: [2] ICHIHASHI H.-TANAKA H.-ASAI K.: Fuzzy integrals based on pseudo-addition and multiplication.J. Math. Anal. Appl. 130 (1988), 354-364. MR 0929941
Reference: [3] KLEMENT E. P.-WEBER S.: Generalized measures.Fuzzy Sets and Systems 40 (1991), 375-394. Zbl 0733.28012, MR 1103665
Reference: [4] KOLESÁROVÁ A.: A note on the $\oplus$-measure based integrals.Tatra Mountains Math. Publ. 3 (1993), 173-182. Zbl 0799.28014, MR 1278532
Reference: [5] MARINOVÁ I.: Integration with respect to a $\oplus$-measure.Math. Slovaca 36 (1986), 15-24. Zbl 0606.28019, MR 0832366
Reference: [6] MESIAR R.-PAP E.: On additivity and pseudo-additivity of pseudo-additive measure based integrals.(To appear).
Reference: [7] MESIAR R.-RYBÁRIK J.: Pseudo-arithmetical operations.Tatra Mountains Math. Publ. 2 (1993), 185-192. Zbl 0840.28011, MR 1251052
Reference: [8] PAP E.: An integral generated by a decomposable measure.Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 20 (1990), 135-144. Zbl 0754.28002, MR 1158414
Reference: [9] PAP E.: g-Calculus.Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. (To appear). Zbl 0823.28011, MR 1319781
Reference: [10] RIEČANOVÁ Z.: About $\sigma$-additive and $\sigma$-maxitive measures.Math. Slovaca 32 (1982). 389-395. Zbl 0507.28004, MR 0676575
Reference: [11] SHILKRET N.: Maxitive measure and integration.Indag. Math. 33 (1971), 109-116. Zbl 0218.28005, MR 0288225
Reference: [12] SUGENO M.-MUROFUSHI T.: Pseudo-additive measures and integrals.J. Math. Anal. Appl. 122 (1987), 197-222. Zbl 0611.28010, MR 0874969
Reference: [13] WEBER S.: $\perp$-decomposable measures and integrals for Archimedean t-conorm $\perp$.J. Math. Anal. Appl. 101 (1984), 114-138. MR 0746230
.

Files

Files Size Format View
MathSlov_46-1996-1_5.pdf 1.069Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo