Previous |  Up |  Next

Article

Title: On compact group-valued measures (English)
Author: Volauf, Peter
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 46
Issue: 1
Year: 1996
Pages: 53-62
.
Category: math
.
MSC: 28B10
MSC: 28B15
idZBL: Zbl 0911.28010
idMR: MR1414409
.
Date available: 2009-09-25T11:12:37Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/136663
.
Reference: [1] BERNAU S. J.: Unique representation of Archimedean lattice groups and normal Archimedean lattice rings.Proc. London Math. Soc. (3) 15 (1965), 599-631. MR 0182661
Reference: [2] BIRKHOFF G.: Lattice Theory.Amer. Math. Soc, Providence, R. I.-1967. Zbl 0153.02501, MR 0227053
Reference: [3] FREMLIN D. H.: A direct proof of the Mathes-Wright integral extension theorem.J. London Math. Soc. (2) 11 (1975), 276-284. MR 0380345
Reference: [4] HRACHOVINA E.: A generalization of the Kolmogorov consistency theorem for vector measures.Acta Math. Univ. Comenian. 54-55 (1988), 141-145. Zbl 0723.28004, MR 1083208
Reference: [5] JAMESON G.: Ordered Linear Spaces.Lecture Notes in Math. 141, Springer, Berlin-New York, 1970. Zbl 0196.13401, MR 0438077
Reference: [6] LUXEMBURG W. A.-ZAANEN A. C.: Riesz Spaces I.North Holland, Amsterdam, 1971.
Reference: [7] MARCZEWSKI E.: On compact measures.Fund. Math. 40 (1953), 113-124. Zbl 0052.04902, MR 0059994
Reference: [8] RIEČAN B.: On the lattice group valued measures.Časopis Pěst. Mat. 101 (1976), 343-349. MR 0499072
Reference: [9] RIEČAN B.: Notes on lattice-valued measures.Acta Math. Univ. Comenian. XLII-XLIII (1983), 181-192. Zbl 0568.28010, MR 0740746
Reference: [10] RIEČAN B.: On measures and integrals with values in ordered groups.Math. Slovaca 33 (1983), 153-163. Zbl 0519.28004, MR 0699085
Reference: [11] RIEČAN J.: On the Kolmogorov consistency theorem for Riesz space valued measures.Acta Math. Univ. Comenian. 48-49 (1986), 173-180. Zbl 0626.60007, MR 0885331
Reference: [12] ŠIPOŠ J.: On extension of group valued measures.Math. Slovaca 40 (1990), 279-286. Zbl 0760.28007, MR 1094781
Reference: [13] VOLAUF P.: On extension of maps with values in ordered spaces.Math. Slovaca 30, (1980), 351-361. Zbl 0448.28007, MR 0595295
Reference: [14] VOLAUF P.: On various notions of regularity in ordered spaces.Math. Slovaca 35 (1985).127-130. Zbl 0597.28017, MR 0795006
Reference: [15] VOLAUF P.: On the lattice group valued submeasures.Math. Slovaca 40 (1990). 107-411. Zbl 0760.28008, MR 1120971
Reference: [16] VOLAUF P.: Alexandrov and Kolmogorov consistency theorem for measures with values in partially ordered groups.Tatra Moutains Math. Publ. 3 (1993), 237-244. Zbl 0820.28006, MR 1278538
Reference: [17] WRIGHT J. D. M.: The measure extension problem for vector lattices.Ann. Inst. Fourier (Grenoble) 21 (1971), 65-85. Zbl 0215.48101, MR 0330411
Reference: [18] WRIGHT J. D. M.: An algebraic characterization of vector lattices with the Borel regularity property.J. London Math. Soc. (2) 7 (1973), 277-285. Zbl 0266.46036, MR 0333116
Reference: [19] WRIGHT J. D. M.: Measures with values in partially ordered spaces: regularity and $\sigma$-additivity.In: Measure Theory. Lecture Notes in Math. 541 (D. Kozlov, A. Bellow, eds.). Springer, Berlin-New York, 1976, pp. 267-276. Zbl 0357.28011, MR 0450506
Reference: [20] WRIGHT J. D. M.: Sur certain espaces vectoriels reticules.C.R. Acad. Sc. Paris 290 (1990), 169-170. MR 0564152
.

Files

Files Size Format View
MathSlov_46-1996-1_6.pdf 888.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo