Previous |  Up |  Next

Article

References:
[1] BOLLOBÁS B.: Random Graphs. Academic Press, New York, 1985. MR 0809996 | Zbl 0592.05052
[2] BOLLOBÁS B.-ERDŐS P.: Cliques in random graphs. Math. Proc. Cambridge Philos. Soc. 80 (1976), 419-427. MR 0498256 | Zbl 0344.05155
[3] FARBER M.-HUJTER M., TUZA, ZS.: An upper bound on the number of cliques in a graph. Networks 23 (1993), 207-210. MR 1215390 | Zbl 0777.05070
[4] FÜREDI Z.: The number of maximal independent sets in connected graphs. J. Graph Theory 11 (1987), 463-470. MR 0917193 | Zbl 0647.05032
[5] HEDMAN B.: The maximum number of cliques in dense graphs. Discrete Math. 54 (1985), 161-166. MR 0791657 | Zbl 0569.05029
[6] KALBFLEISCH J. G.: Complete subgraphs of random hypergraphs and bipartite graphs. In: Proc. of 3rd Southeastern Conference on Combinatorics, Graph Theory and Computing, Florida Atlantic University, 1972, pp. 297-304. MR 0354447 | Zbl 0272.05126
[7] KORSHUNOV A. D.: The basic properties of random graphs with large numbers of vertices and edges. Uspekhi Mat. Nauk 40 (1985), 107-173. (Russian) MR 0783606
[8] MATULA D. W.: On the complete subgraphs of a random graph. In: Proc. 2nd Chapel Hill Conf. Combinatorial Math, and its Applications (R. C. Bose et al., eds.), Univ. North Carolina, Chapel Hill, 1970, pp. 356-369. MR 0266796 | Zbl 0209.28101
[9] MATULA D. W.: The employee party problem. Notices Amer. Math. Soc. 19 (1972), A-382.
[10] MATULA D. W.: The largest clique size in a random graph. Technical report CS 7608, Dept. of Computer Science, Southern Methodist University, Dallas, 1976.
[11] MOON J. W.-MOSER L.: On cliques in graphs. Israel J. Math. 3 (1965), 22-28. MR 0182577 | Zbl 0144.23205
[12] PALMER E. M.: Graphical Evolution: An Introduction to the Theory of Random Graphs. John Wiley, New York, 1985. MR 0795795 | Zbl 0566.05002
Partner of
EuDML logo