Previous |  Up |  Next

Article

Title: Effect algebra counterexamples (English)
Author: Gudder, Stanley P.
Author: Greechie, Richard
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 46
Issue: 4
Year: 1996
Pages: 317-325
.
Category: math
.
MSC: 03G12
MSC: 81P10
idZBL: Zbl 0890.03035
idMR: MR1472626
.
Date available: 2009-09-25T11:16:40Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/129156
.
Reference: [1] AERTS D., DAUBECHIES I.: Physical justification of using tensor products to describe physical systems as one joint system.Helv. Phys. Acta 51 (1978), 661 675. MR 0542798
Reference: [2] CATTANEO G., NISTICO G.: Brouwer-Zadeh posets and three-valued Lukasiewicz posets.Internat. J. Fuzzy. Sets Sys. 33 (1989), 165-190. Zbl 0682.03036, MR 1024221
Reference: [3] DAVIES E. B.: Quantum Theory of Open Systems.Academic Press, London, 1976. Zbl 0388.46044, MR 0489429
Reference: [4] DAVIES E. B.-LEWIS J. T.: An operational approach to quantum probability.Comm. Math. Phys. 17 (1970), 239-260. Zbl 0194.58304, MR 0263379
Reference: [5] DVUREČENSKIJ A.: Tensor product of difference posets.Trans. Ameг. Math. Soc. 347 (1995), 1043-1057. Zbl 0859.03031, MR 1249874
Reference: [6] DVUREČENSKIJ A., PULMANNOVÁ S.: Tensor products of D-posets and D-test spaces.Rep. Math. Phys. 34 (1994), 4251-4275. Zbl 0830.03031, MR 1339465
Reference: [7] FOULIS D.: Coupled physical systems.Found. Phys. 19 (1989), 905-922. MR 1013911
Reference: [8] FOULIS D., BENNETT M. K.: Tensor products of orthoalgebras.Order 10 (1993). 271-282. Zbl 0798.06015, MR 1267193
Reference: [9] FOULIS D., BENNETT M. K.: Effect algebras and unsharp quantum logics.Found. Phys. 24 (1994), 1325-1346. Zbl 1213.06004, MR 1304942
Reference: [10] GIUNTINI R. GREULING H.: Toward a formal language for unsharp properties.Found. Phys. 19 (1989), 931-945. MR 1013913
Reference: [11] GREECHIE R.: Orthomodular lattices admitting no states.J. Combin. Theory 10 (1971). 119-132. Zbl 0219.06007, MR 0274355
Reference: [12] HOLEVO A. S.: Probabilistic and Statistical Aspects of Quantum Theory.. North-Holland. Amsterdam, 1982. Zbl 0497.46053, MR 0681693
Reference: [13] KADISON R.: Order properties of bounded, self-adjoint operators.Proc. Amer. Math. Soc. 34 (1951), 505-510. Zbl 0043.11501, MR 0042064
Reference: [14] KAKUTANI S.: Concrete representatum of abstract (M)-spaces.Ann. of Math. 42 ( 1941). 994 1024. MR 0005778
Reference: [15] KLÄY M., RANDALL C., FOULIS D.: Tensor products and probability weights.Internat. J. Theoret. Phys. 26 (1987), 199-216. Zbl 0641.46049, MR 0892411
Reference: [16] KRAUS K.: States, Effects, and Operations.Springer-Verlag, Berlin. 1983. Zbl 0545.46049, MR 0725167
Reference: [17] KOPKA F., CHOVANEC F.: D-posets.Math. Slovaca 44 (1994), 21-34. Zbl 0789.03048, MR 1290269
Reference: [18] LAHTI P. J.-MACZYNSKI M. J.: Partial order of quantum effects.J. Math. Phys. 36 (1995), 1673-1680. Zbl 0829.46060, MR 1322660
Reference: [19] LOCK R.: The tensor product of generalized sample spaces which admit a unital set of dispersion-free weights.Found. Phys. 20 (1990), 477-498. MR 1060619
Reference: [20] LUDWIG G.: Foundations of Quantum Mechanics I.Springer-Verlag, Berlin, 1983. Zbl 0509.46057, MR 0690770
Reference: [21] PULMANNOVA S.: Tensor products of quantum logics.J. Math. Phys. 26 (1985), 1-5. MR 0776118
Reference: [22] WILCE A.: Tensor products of frame manuals.Internat. J. Theoret. Phys. 29 (1990), 805-814. MR 1070453
.

Files

Files Size Format View
MathSlov_46-1996-4_3.pdf 1.139Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo