Previous |  Up |  Next

Article

Title: Longest circuits in triangular and quadrangular $3$-polytopes with two types of edges (English)
Author: Jendroľ, Stanislav
Author: Kekeňák, Roman
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 40
Issue: 4
Year: 1990
Pages: 341-357
.
Category: math
.
MSC: 05C40
MSC: 05C45
idZBL: Zbl 0757.05073
idMR: MR1120965
.
Date available: 2009-09-25T10:26:29Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/129289
.
Reference: [1] EWALD G.: Hamiltonian circuits in simplicial complexes.Geometriae Dedicata 2, 1973, 115-125. Zbl 0272.57008, MR 0320891
Reference: [2] EWALD G.: On shortness exponents of families of graphs.Israel J. Math., 16, 1973, 53-61. Zbl 0271.05107, MR 0344152
Reference: [3] EWALD G., KLEINSCHMIDT P., PACHNER U., SCHULZ, CH.: Neuere Entwick- lungen in der kombinatorischen Konvexgeometrie.Contributions to geometry (ed. J. Tolke, J. M. Wills), Birkhäuser Verlag, Basel 1979, 131-169. MR 0568497
Reference: [4] GRÜNBAUM B.: Convex polytopes.Wiley, New York 1967. Zbl 0163.16603, MR 0226496
Reference: [5] GRÜNBAUM B.: Polytopes, graphs, and complexes.Bull. Amer. Math. Soc. 76, 1970, 1131-1201. Zbl 0211.25001, MR 0266050
Reference: [6] GRÜNBAUM B., MALKEVITCH J.: Pairs of edge-disjoint Hamiltonian circuits.Aequatines Math. 14, 1976, 191 - 196. Zbl 0331.05118, MR 0414443
Reference: [7] GRÜNBAUM B., WALTHER H.: Shortness exponents of families of graphs.J. Combinatorial Theory (A) 14, 1973, 364-385. Zbl 0263.05103, MR 0314691
Reference: [8] HARANT J., WALTHER H.: Some new results about the shortness exponent in polyhedra graphs.Čas. pěst. mat., 112, 1987, 114-122. MR 0897639
Reference: [9] JACKSON B.: Longest cycles in 3-connected cubic graphs.J. Combinatorial Theory (B) 41 1986, 17-26. Zbl 0591.05040, MR 0854600
Reference: [10] JENDROĽ S., JUCOVIČ E.: On quadrangular convex 3-polytopes with at most two types of edges.Discrete Math. 78, 1989, 297-305. Zbl 0691.52004, MR 1026349
Reference: [11] JENDROĽ S., JUCOVIČ E., TRENKLER M.: Vertex-vectors of quadrangular 3-polytopes with two types of edges.Combinatories and Graph Theory, Banach Center Publications, Vol. 25, PWN - Polish Scientific Publishers, Warsaw 1989, 93-111. Zbl 0705.05043, MR 1097639
Reference: [12] JENDROĽ S., MIHÓK P.: On a class of Hamiltonian polytopes.Discrete Math. 71, 1988, 233-241. Zbl 0655.05045, MR 0959008
Reference: [13] JENDROĽ S., TKÁČ M.: On the simplicial 3-polytopes with only two types of edges.Discrete Math. 48, 1984, 229-241. Zbl 0536.52003, MR 0737268
Reference: [14] JUCOVIČ E.: Konvexné mnohosteny.Veda, Bratislava, 1981 (in Slovak).
Reference: [15] ORE O.: The four-color problem.Academic Press, New York-London, 1967. Zbl 0149.21101, MR 0216979
Reference: [16] OWENS P. J.: Shortness parameters of families of regular planar graphs with two or three types of faces.Discrete Math. 39, 1982, 199-201. MR 0675864
Reference: [17] OWENS P. J.: Regular planar graphs with faces of only two types and shortness parameters.J. Graph Theory 8, 1984, 253-275. Zbl 0541.05037, MR 0742879
Reference: [18] OWENS P. J.: Non-hamiltonian simple 3-polytopes with only one type of face besides triangles.Annals of Discrete Math. 20, 1984, 241-251. Zbl 0571.05033, MR 0791037
Reference: [19] OWENS P. J.: Simple 3-polytopal graphs with edges of only two types and shortness coefficients.Discrete Math. 59, 1986, 107-114. Zbl 0586.05027, MR 0837960
Reference: [20] PAREEK C. M.: On the maximum degree of locally hamiltonian non-hamiltonian graphs.Utilitas Mathematica 23, 1983, 101-120. Zbl 0523.05048, MR 0703133
Reference: [21] TRENKLER M.: On the face-vector of a 5-valent convex 3-polytope.Mat. Časopis 25, 1975, 351-360. Zbl 0313.52004, MR 0467535
Reference: [22] ZAKS J.: Shortness coeffìcient of cyclically 5-connected cubic planar graphs.Aequationes Math. 25, 1982, 97-102. Zbl 0518.05045, MR 0716382
.

Files

Files Size Format View
MathSlov_40-1990-4_2.pdf 915.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo