Previous |  Up |  Next

Article

Title: The asymptotic properties of solutions of linear delay differential equations (English)
Author: Kundrát, Petr
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 56
Issue: 3
Year: 2006
Pages: 349-360
.
Category: math
.
MSC: 34K25
idZBL: Zbl 1141.34047
idMR: MR2250085
.
Date available: 2009-09-25T14:32:51Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/129338
.
Reference: [1] ATKINSON F. V.-HADDOCK J. R.: Criteria for asymptotic constancy of solutions of functional differential equations.J. Math. Anal. Appl. 91 (1983), 410-423. Zbl 0529.34065, MR 0690880
Reference: [2] BERETOGLU H.-PITUK M.: Asymptotic constancy for nonhomogeneous linear differential equations with unbounded delays.Discrete Contin. Dуn. Sуst. (A Suppl. Vol. for the Wilmington Meeting 2002) (2003), 100-107. MR 2018105
Reference: [3] ČERMÁK J.: Asymptotic behaviour of solutions of some differential equations with an unbounded delay.In: Electron. J. Qual. Theorу Differ. Equ. 2000, Suppl. Proc. бth Colloq. QTDE 2, 2000, pp. 1-8. MR 1798652
Reference: [4] ČERMÁK J.: A change of variables in the asymptotic theory of differential equations with unbounded delays.J. Comput. Appl. Math. 143 (2002), 81-93. Zbl 1016.34077, MR 1907784
Reference: [5] CERMÁK J.-KUNDRÁT P.: Linear differential equations with unbounded delays and a forcing term.Abstr. Appl. Anal. 4 (2004), 337-345. Zbl 1104.34053, MR 2064145
Reference: [6] DIBLÍK J.: Asymptotic representation of solutions of equation $y'(t) = \beta (t)[y(t) - y (t - \tau (t))]$.J. Math. Anal. Appl. 217 (1998), 200-215. MR 1492085
Reference: [7] KATO T.-MCLEOD J. B.: The functional differential equation $y'(x) = ay(\lambda x) + b y(x)$.Bull. Amer. Math. Soc. 77 (1971), 891-937. MR 0283338
Reference: [8] KRISZTIN T.: A note on the convergence of the solutions of a linear functional-differential equation.J. Math. Anal. Appl. 145 (1990), 17-25. Zbl 0693.45012, MR 1031171
Reference: [9] KUNDRÁT P.: On asymptotic properties of solutions of the difference equation $\Delta x(t) = - a x(t) + b x(\tau(t))$.In: Proceedings of ICDEA Conference 2003, Brno Proceedings of the 8th International Conference on Difference Equations and Applications (ICDEA 2003), Masaryk University Brno, Czech Republic, July 28-August 1, 2003. (S. Elaydi et al., eds.), Chapman & Hall/CRC, Boca Raton, FL, 2005, pp. 193-200. MR 2144840
Reference: [10] LIM E. B.: Asymptotic bounds of solutions of the functional differential equation $x'(t) = ax(\lambda t) + b x(t) + f (t)$, $0 < \lambda < 1$.SIAM J. Math. Anal. 9 (1978), 915-920. MR 0506772
Reference: [11] PITUK M.: On the limits of solutions of functional differential equations.Math. Bohem. 118 (1993), 53-66. Zbl 0778.34056, MR 1213833
.

Files

Files Size Format View
MathSlov_56-2006-3_9.pdf 1.361Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo