Previous |  Up |  Next

Article

Title: Fixed points of asymptotically regular mappings (English)
Author: Górnicki, Jarosław
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 43
Issue: 3
Year: 1993
Pages: 327-336
.
Category: math
.
MSC: 46E30
MSC: 46E35
MSC: 47H10
MSC: 54H25
idZBL: Zbl 0806.47049
idMR: MR1241369
.
Date available: 2009-09-25T10:48:55Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/129587
.
Reference: [1] BROWDER F. E., PETRYSHYN V. W.: The solution by iteration of nonlinear functional equations in Banach spaces.Bull. Amer. Math. Soc. 72 (1966), 571-576. Zbl 0138.08202, MR 0190745
Reference: [2] BYNUM W. L.: Normal structure coefficients for Banach spaces.Pacific J. Math. 86 (1980), 427-436. Zbl 0442.46018, MR 0590555
Reference: [3] CASINI E., MALUTA E.: Fixed points of uniformly Lipschitzian mappings in spaces with uniformly normal structure.Nonlinear Anal. 9 (1985), 103-108. Zbl 0526.47034, MR 0776365
Reference: [4] DANEŠ J.: On densifying and related mappings and their applications in nonlinear functional analysis.In: Theory of Nonlinear Operators. Proc. Summer School, October 1972, GDR, Akademie-Verlag, Berlin, 1974, pp. 15-56. MR 0361946
Reference: [5] GOEBEL K., KIRK W. A.: Topics in Metric Fixed Point Theory.Cambridge Stud. Adv. Math. 28, Cambridge University Press, London, 1990. Zbl 0708.47031, MR 1074005
Reference: [6] GÓRNICKI J.: Fixed point theorems for asymptotically regular mappings in Lp spaces.Nonlinear Anal. 17 (1991), 153-159. MR 1118074
Reference: [7] KRÜPPEL M.: Ein Fixpunktsatz für asymptotisch reguläre Operatoren im Hilbert-Raum.Wiss. Z. Pädagog. Hochsch. "Liselotte Herrmann" Güstrow Math.-Natur. Fak. 27 (1989), 247-251. Zbl 0721.47040, MR 1086619
Reference: [8] LIM T. C.: On some Lp inequalities in best approximation theory.J. Math. Anal. Appl. 154 (1991), 523-528. MR 1088648
Reference: [9] LIM T. C., XU H. K., XU Z. B.: An Lp inequality and its applications to fixed point theory and approximation theory.In: Progress in Approximation Theory, Academic Press, 1991, pp. 609-624.
Reference: [10] LIN P. K.: A uniformly asymptotically regular mapping without fixed points.Canad. Math. Bull. 30 (1987), 481-483. Zbl 0645.47050, MR 0919440
Reference: [11] PICHUGOV S. A.: Jung's constant of the space Lp.(Russian), Mat. Zametki 43 (1988), 604-614. (Translation: Math. Notes 43 (1988), 348-354). MR 0954343
Reference: [12] PRUS B., SMARZEWSKI R.: Strongly unique best approximations and centers in uniformly convex spaces.J. Math. Anal. Appl. 121 (1987), 10-21. Zbl 0617.41046, MR 0869515
Reference: [13] PRUS S.: On Bynum's fixed point theorem.Atti Sem. Mat. Fis. Univ. Modena 38 (1990), 535-545. Zbl 0724.46020, MR 1076471
Reference: [14] PRUS S.: Some estimates for the normal structure coefficient in Banach spaces.Rend. Circ. Mat. Palermo (2) XL (1991), 128-135. Zbl 0757.46029, MR 1119750
Reference: [15] SMARZEWSKI R.: Strongly unique minimization of junctionals in Banach spaces with applications to theory of approximation and fixed points.J. Math. Anal. Appl. 115 (1986), 155-172. MR 0835591
Reference: [16] SMARZEWSKI R.: Strongly unique best approximation in Banach spaces II.J. Approx. Theory 51 (1987), 202-217. Zbl 0657.41022, MR 0913618
Reference: [17] SMARZEWSKI R.: Classical and Extended Strong Unicity of Approximation in Banach Spaces.(Polish), Mariae Curie-Sklodowska University, Lublin, 1986.
Reference: [18] SMARZEWSKI R.: On the inequality of Bynum and Drew.J. Math. Anal. Appl. 150 (1990), 146-150. MR 1059576
Reference: [19] XU H. K.: Inequalities in Banach spaces with applications.Nonlinear Anal. 16 (1991), 1127-1138. Zbl 0757.46033, MR 1111623
Reference: [20] ZALINESCU C.: On uniformly convex function.J. Math. Anal. Appl. 95 (1983), 344-374. MR 0716088
.

Files

Files Size Format View
MathSlov_43-1993-3_7.pdf 602.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo