Previous |  Up |  Next

Article

Title: A matrix with an application to the motion of an absorbing Markov chain. I. (English)
Author: El-Shehawey, Mohamed A.
Author: Trabya, A. M.
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 46
Issue: 1
Year: 1996
Pages: 101-110
.
Category: math
.
MSC: 60G50
MSC: 60J10
idZBL: Zbl 0864.60060
idMR: MR1414413
.
Date available: 2009-09-25T11:13:10Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/130095
.
Related article: http://dml.cz/handle/10338.dmlcz/128856
.
Reference: [1] BARNETT V. D.: The joint distribution of occupation totals for a simple random walk.J. Austral. Math. Soc. 4 (1964), 518-528. Zbl 0218.60063, MR 0174095
Reference: [2] BHAТ B. R.: Some properties of regular Markov chains.Ann. Math. Statist. 32 (1961), 59-71. MR 0119367
Reference: [3] COX D. R.-MILLER H. D.: The Theory of Stochastic Processes.Methuen, London, 1965. Zbl 0149.12902, MR 0192521
Reference: [4] EL-SHEHAWEY M. A.: Limit distribution of first hittгng time of delayed random walk.J. Indian Soc. Statist. Oper. Res. XIII (1992), 63-72. MR 1221463
Reference: [5] EL-SHEHAWEY M. A.: On absorption probabilities for a random walk between two different barriers.Ann. Fac. Sci. Тoulouse Math. (6) I (1992), 1-9. MR 1191730
Reference: [6] EL-SHEHAWEY M. A.-ТRABYA A. M.: On times to absorption of random walks.In: 18th International Conference for Statistics, Computer Science, Scientifics, Social Applications, Cairo, Ain Shams University, Faculty of Science, 1993.
Reference: [7] FELLER W.: An Introduction to Probability Theory and Its Applicatгons.Vol. 1 (Зrd ed.), John Wiley and Sons, New York, 1967. MR 0243559
Reference: [8] GOOD I. J.: The frequency count of a Markov chain and the transition to contгnuous time.Ann. Math. Statist. 32 (1961), 41-48. MR 0126948
Reference: [9] ISOIFESCU M.: Finite Markov Processes and Their Applications.John Willey and Sons, New York, 1980. MR 0587116
Reference: [10] KAC M.: Random walk in the presence of absorbing barriers.Ann. Math. Statist. 14 (1945), 62-67. Zbl 0060.29101, MR 0011917
Reference: [11] KEMENY J. G.-SNELL J. L.: Finite Markov Chains.Springer-Verlag, New York, 1976. Zbl 0328.60035, MR 0410929
Reference: [12] KEMPERMAN J. H. B.: The Passage Problem for a Stationary Markov Chain..Univ. of Chicago Press, Chicago, 1961. MR 0119226
Reference: [13] NEUТS M. F.: General transition probabilities for finite Markov chains.Proc. Cambridge Philos. Soc. 60 (1964), 83-91. MR 0158436
Reference: [14] PARZEN E.: Stochastic Process.Holden-day, Inc, London, 1962. MR 0139192
Reference: [15] SRINIVASAN S. K.-MEHAТA K. M.: Stochastic Process.Mc Grow-Hill, New Delhi, 1976.
Reference: [16] WEESAKUL B.: The random walk between a reflecting and an absorbing barriers.Ann. Math. Statist. 32 (1961), 765-769. MR 0125641
.

Files

Files Size Format View
MathSlov_46-1996-1_10.pdf 1.312Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo