Previous |  Up |  Next

Article

Title: Local properties of stably complex $G$-actions (English)
Author: Pawałowski, Krzysztof
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 46
Issue: 1
Year: 1996
Pages: 83-100
.
Category: math
.
MSC: 57S17
MSC: 57S25
idZBL: Zbl 0861.57046
idMR: MR1414412
.
Date available: 2009-09-25T11:13:02Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/132957
.
Reference: [1] ASSADI A. H.: Finite group actions on simply-connected manifolds and CW complexes.Mem. Amer. Math. Soc. 35 no. 257 (1982). Zbl 0486.57015, MR 0643341
Reference: [2] BREDON G. E.: Introduction to Compact Transformation Groups.Pure Appl. Math. 46, Academic Press, Boston, MA, 1972. Zbl 0246.57017, MR 0413144
Reference: [3] CAPPELL S. E.-SHANESON J. L.: Representations at fixed point.In: Group Actionson Manifolds. Contemp. Math. 36, Amer. Math. Soc, Providence, RI, 1985, pp. 151-158. MR 0780963
Reference: [4] DOVERMANN K. H.-PETRIE T.-SCHULTZ R.: Transformatгon groups and fixed point dat.In: Group Actions on Manifolds. Contemp. Math. 36, Amer. Math. Soc, Providence, RI, 1985, pp. 159-189. MR 0780964
Reference: [5] HSIANG W.-C.-HSIANG W.-Y.: Some proЫems in differentiable transformation group.In: Proceedings of the Conference on Transformation Groups (New Orleans, 1967), Spгinger-Verlag, Berlin-Heidelberg-New York, 1968, pp. 223-234. MR 0253368
Reference: [6] KAWAKUBO K.: The Theory of Transformation Groups.Oxford Universitу Press, Oxford-New York-Тokуo, 1991. Zbl 0744.57001, MR 1150492
Reference: [7] MASUDA M.-PETRIE T.: Lectures on transformation groups and Smith equivalence.In: Group Actions on Manifolds. Contemp. Math. 36, Amer. Math. Soc, Providence. RI, 1985, pp. 191-242. Zbl 0571.57029, MR 0780965
Reference: [8] OLIVER R.: Fixed point sets of group actions on finite acyclic complexes.Comment. Math. Helv. 50 (1975), 155-177. Zbl 0304.57020, MR 0375361
Reference: [9] OLIVER R. : G-actions on disks and permutation representations.II, Math. Z. 157 (1977), 237-263. Zbl 0428.57014, MR 0646085
Reference: [10] PAWALOWSKI K.: Group actions with inequivalent representations at fixed point.Math. Z. 187 (1984), 29-47. MR 0753418
Reference: [11] PAWALOWSKI K.: Fixed point sets of smooth group actions on disks and Euclidean spaces.A survey. In: Geometric and Algebraic Topology. Banach Center Publ. 18, PWN - Polish Scientific Publishers, Warsaw, 1986, pp. 165-180. Zbl 0649.57036, MR 0925864
Reference: [12] PAWALOWSKI K.: Fixed point sets of smooth group actions on disks and Euclidean space.Topology 28 (1989), 273-289. MR 1014462
Reference: [13] PAWALOWSKI K.: Normal representations over the connected components of fixed point set.In: Transformation Groups. Proceedings (Osaka, 1987). Lecture Notes in Math. 1375. Springer, New York-Berlin, 1989, pp. 267-290. MR 1006700
Reference: [14] PAWALOWSKI K.: Nonlinear smooth group actions on disks, spheres, and Euclidean space.Max-Planck-Institut fur Mathematik, Bonn, MPI/89-30.
Reference: [15] PAWALOWSKI K.: Negative answers to Hsiangs' problem for smooth S1-action.Forschungsschwerpunkt Geometric Universitat Heidelberg, Heft Nr. 62.
Reference: [16] PAWALOWSKI K.: Normal representations for cyclic group actions on disks, spheres, and Euclidean space.Bull. Polish Acad. Sci. Math. 39 (1991), 75-82. MR 1194710
Reference: [17] SERRE, J .-P.: Linear Representations of Finite Groups.Grad. Texts in Math. 42, Springer, New York-Berlin, 1977. Zbl 0355.20006, MR 0450380
Reference: [18] SMITH P. A.: New results and old problems in finite transformation group.Bull. Amer. Math. Soc 66 (1960), 401-415. MR 0125581
.

Files

Files Size Format View
MathSlov_46-1996-1_9.pdf 1.432Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo