Previous |  Up |  Next

Article

References:
[1] ANDRES J., JEZIERSKI J., GÓRNIEWICZ L.: Relative versions of the multivalued Lefschetz and Nielsen theorems and their application to admissible semi-flows. Topol. Methods Nonlinear Anal. 16 (2000), 73-92; Periodic points of multivalued mappings with applications to differential inclusions, Topology Appl. (To appear). MR 1805040 | Zbl 0991.47040
[2] BORSUK K.: Theory of Retracts. PWN, Warszawa, 1966. MR 0216473
[3a] BOWSZYC C.: Fixed point theorem for the pairs of spaces. Bull. Polish Acad. Sci. Math. 16 (1968), 845-851; 17 (1969), 367-372. MR 0246290
[3b] BOWSZYC C.: On the Euler-Poincairé characteristic of a map and the existence of periodic points. Bul. Polish Acad. Sci. Math. 17 (1969), 367-372. MR 0253327
[4] BROWN R. F.: The Lefschetz Fixed Point Theorem. Scott, Foresman and Co., Glenview Ill.-London, 1971. MR 0283793 | Zbl 0216.19601
[5] FOURNIER G.: Généralisations du théoremé de Lefschetz pour des espaces noncompacts I; II; III. Bull. Polisһ Acad. Sci. Math. 23 (1975), 693-699; 701-706; 707-711.
[6a] FOURNIER G., GÓRNIEWICZ L.: The Lefschetz fixed point theorem for some noncompact multivalued maps. Fund. Matһ. 94 (1977), 245-254; MR 0436123
[6b] FOURNIER G., GÓRNIEWICZ L.: The Lefschetz fixed point theorem for multivalued maps of non-metrizable spaces. Fund. Matһ. 92 (1976), 213-222; 94 (1977), 245-254.
[7] FOURNIER G., VIOLEТТE D.: A fixed point index for compositions of acyclic multivalued maps in Banach spaces. Тhe MSRI-Korea Publications 1 (1966), 139-158; Ann. Sci. Math. Québec 22 (1998), 225-244. MR 1677188
[8] GÓRNIEWICZ L.: Homological methods in fixed point theory of multivalued rnappings. Dissertationes Math. (Rozprawy Mat.) 129 (1976), 1-71. MR 0394637
[9] GÓRNIEWICZ L.: Topological Fixed Point Theory of Multivalued Mappings. Kluwer, Dordrеcht, 1999. Zbl 0937.55001
[10] GÓRNIEWICZ L., GRANAS A.: On the theorem of C. Bowszyc concerning the relative version of the Lefschetz fixed point theorem. Bull. Inst. Math. Acad. Sinica 12 (1975), 137-142. MR 0805015
[11] GRANAS A.: Generalizing the Hopf-Lefschetz fixed point theorem for noncompact ANR's. In: Symp. Inf. Dim. Тopol., Báton-Rougе, 1967.
[12] GRANAS A.: Thе Leray-Schauder index and the fixed point theory for arbitrary ANR's. Bull. Soc. Matһ. Francе 100 (1972), 209-228. MR 0309102
[13] KRYSZEWSKI W.: Thе Lefschetz type theorem for a class of noncompact mapping. Suppl. Rеnd. Circ. Mat. Palеrmo (2) 14 (1987), 365-384. MR 0920869
[14] NUSSBAUM R.: Generalizing the fixed point index. Matһ. Ann. 228 (1979), 259-278. In: Lеcturе Notеs in Math. 1537, Springеr Vеrlag, Nеw York, 1991. MR 0440587
[15] PASТOR D.: A remark on generalized compact maps. Studiеs Univ. Žilina 13 (2001), 147-155.
[16] SRZEDNICKI R.: Generalized Lefschetz theorem and fixed point index formula. Тopology Appl. 81 (1997), 207-224. MR 1485768
[17] ŠEDA V.: On condensing discrete dynamical systems. Math. Bohеmica (Тo appеar). Zbl 0996.37008
[18] THOMPSON R. B.: A unified approach to local and global fixed point indices. Adv. Math. 3 (1969), 1-71. MR 0247627 | Zbl 0186.57001
Partner of
EuDML logo