Previous |  Up |  Next

Article

Title: On the Lefschetz fixed point theorem (English)
Author: Górniewicz, Lech
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 52
Issue: 2
Year: 2002
Pages: 221-233
.
Category: math
.
MSC: 47H10
MSC: 47H11
MSC: 54H25
MSC: 55M20
idZBL: Zbl 1006.55002
idMR: MR1935120
.
Date available: 2009-09-25T14:07:35Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/131012
.
Reference: [1] ANDRES J., JEZIERSKI J., GÓRNIEWICZ L.: Relative versions of the multivalued Lefschetz and Nielsen theorems and their application to admissible semi-flows.Topol. Methods Nonlinear Anal. 16 (2000), 73-92; Periodic points of multivalued mappings with applications to differential inclusions, Topology Appl. (To appear). Zbl 0991.47040, MR 1805040
Reference: [2] BORSUK K.: Theory of Retracts.PWN, Warszawa, 1966. MR 0216473
Reference: [3a] BOWSZYC C.: Fixed point theorem for the pairs of spaces.Bull. Polish Acad. Sci. Math. 16 (1968), 845-851; 17 (1969), 367-372. MR 0246290
Reference: [3b] BOWSZYC C.: On the Euler-Poincairé characteristic of a map and the existence of periodic points.Bul. Polish Acad. Sci. Math. 17 (1969), 367-372. MR 0253327
Reference: [4] BROWN R. F.: The Lefschetz Fixed Point Theorem.Scott, Foresman and Co., Glenview Ill.-London, 1971. Zbl 0216.19601, MR 0283793
Reference: [5] FOURNIER G.: Généralisations du théoremé de Lefschetz pour des espaces noncompacts I; II; III.Bull. Polisһ Acad. Sci. Math. 23 (1975), 693-699; 701-706; 707-711.
Reference: [6a] FOURNIER G., GÓRNIEWICZ L.: The Lefschetz fixed point theorem for some noncompact multivalued maps.Fund. Matһ. 94 (1977), 245-254; MR 0436123
Reference: [6b] FOURNIER G., GÓRNIEWICZ L.: The Lefschetz fixed point theorem for multivalued maps of non-metrizable spaces.Fund. Matһ. 92 (1976), 213-222; 94 (1977), 245-254.
Reference: [7] FOURNIER G., VIOLEТТE D.: A fixed point index for compositions of acyclic multivalued maps in Banach spaces.Тhe MSRI-Korea Publications 1 (1966), 139-158; Ann. Sci. Math. Québec 22 (1998), 225-244. MR 1677188
Reference: [8] GÓRNIEWICZ L.: Homological methods in fixed point theory of multivalued rnappings.Dissertationes Math. (Rozprawy Mat.) 129 (1976), 1-71. MR 0394637
Reference: [9] GÓRNIEWICZ L.: Topological Fixed Point Theory of Multivalued Mappings.Kluwer, Dordrеcht, 1999. Zbl 0937.55001
Reference: [10] GÓRNIEWICZ L., GRANAS A.: On the theorem of C. Bowszyc concerning the relative version of the Lefschetz fixed point theorem.Bull. Inst. Math. Acad. Sinica 12 (1975), 137-142. MR 0805015
Reference: [11] GRANAS A.: Generalizing the Hopf-Lefschetz fixed point theorem for noncompact ANR's.In: Symp. Inf. Dim. Тopol., Báton-Rougе, 1967.
Reference: [12] GRANAS A.: Thе Leray-Schauder index and the fixed point theory for arbitrary ANR's.Bull. Soc. Matһ. Francе 100 (1972), 209-228. MR 0309102
Reference: [13] KRYSZEWSKI W.: Thе Lefschetz type theorem for a class of noncompact mapping.Suppl. Rеnd. Circ. Mat. Palеrmo (2) 14 (1987), 365-384. MR 0920869
Reference: [14] NUSSBAUM R.: Generalizing the fixed point index.Matһ. Ann. 228 (1979), 259-278. In: Lеcturе Notеs in Math. 1537, Springеr Vеrlag, Nеw York, 1991. MR 0440587
Reference: [15] PASТOR D.: A remark on generalized compact maps.Studiеs Univ. Žilina 13 (2001), 147-155.
Reference: [16] SRZEDNICKI R.: Generalized Lefschetz theorem and fixed point index formula.Тopology Appl. 81 (1997), 207-224. MR 1485768
Reference: [17] ŠEDA V.: On condensing discrete dynamical systems.Math. Bohеmica (Тo appеar). Zbl 0996.37008
Reference: [18] THOMPSON R. B.: A unified approach to local and global fixed point indices.Adv. Math. 3 (1969), 1-71. Zbl 0186.57001, MR 0247627
.

Files

Files Size Format View
MathSlov_52-2002-2_9.pdf 895.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo