Title:
|
Nonlinear boundary value problem for second-order differential equations depending on a parameter (English) |
Author:
|
Staněk, Svatoslav |
Language:
|
English |
Journal:
|
Mathematica Slovaca |
ISSN:
|
0139-9918 |
Volume:
|
47 |
Issue:
|
4 |
Year:
|
1997 |
Pages:
|
439-449 |
. |
Category:
|
math |
. |
MSC:
|
34B15 |
idZBL:
|
Zbl 0964.34013 |
idMR:
|
MR1796956 |
. |
Date available:
|
2009-09-25T11:24:41Z |
Last updated:
|
2012-08-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/131775 |
. |
Reference:
|
[1] ARSCOTT F. M.: Two-parameter eigenvalue problems in differential equations.Proc. London Math. Soc. (3) 14 (1964), 459-470. Zbl 0121.31102, MR 0165164 |
Reference:
|
[2] DEIMLING K.: Nonlinear Functional Analysis.Springer-Verlag, Berlin, Heidelberg, 1985. Zbl 0559.47040, MR 0787404 |
Reference:
|
[3] GREGUŠ M.-NEUMAN F.-ARSCOTT F. M.: Three-point boundary value problems in differential equations.J. London Math. Soc. (2) 3 (1971), 429-436. Zbl 0226.34010, MR 0283282 |
Reference:
|
[4] HARTMAN P.: Ordinary Differential Equations.Wiley-Interscience, New York, 1964. Zbl 0125.32102, MR 0171038 |
Reference:
|
[5] STANĚK S.: On a class of functional boundary value problems for second-order functional differential equations with parameter.Czechoslovak Math. J. 43(118) (1993), 339-348. Zbl 0788.34069, MR 1211756 |
Reference:
|
[6] STANĚK S.: On a class of five-point boundary value problems for nonlinear second-order differential eqations depending on the parameter.Acta Math. Hungar. 62 (1993), 253-262. MR 1250906 |
Reference:
|
[7] STANĚK S.: Leray-Schauder degree method in functional boundary value problems depending on the parameter.Math. Nachr. 164 (1993), 333-344. Zbl 0805.34053, MR 1251473 |
Reference:
|
[8] STANĚK S.: Boundary value problems for one-parameter second-order differential equations.Ann. Math. Sil. 7 (1993), 89-98. Zbl 0804.34020, MR 1271188 |
Reference:
|
[9] STANĚK S.: On certain five-point boundary value problem for second-order nonlinear differential equations depending on the para meter.Fasc. Math. 25 (1995), 147-154. MR 1339636 |
. |