Previous |  Up |  Next

Article

Title: On special almost geodesic mappings of type $\pi_1$ of spaces with affine connection (English)
Author: Berezovsky, Vladimir
Author: Mikeš, Josef
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 43
Issue: 1
Year: 2004
Pages: 21-26
Summary lang: English
.
Category: math
.
Summary: N.~S.~Sinyukov [5] introduced the concept of an {\em almost geodesic mapping} of a space $A_n$ with an affine connection without torsion onto $\overline{A}_n$ and found three types: $\pi _1$, $\pi _2$ and~$\pi _3$. The authors of [1] proved completness of that classification for $n>5$.\par By definition, special types of mappings $\pi _1$ are characterized by equations $$ P_{ij,k}^h+P_{ij}^\alpha P_{\alpha k}^h =a_{ij} \delta_{k}^h , $$ where $P_{ij}^h\equiv \overline{\Gamma }_{ij}^h-\Gamma _{ij}^h$ is the deformation tensor of affine connections of the spaces $A_n$ and $\overline{A}_n$.\par In this paper geometric objects which preserve these mappings are found and also closed classes of such spaces are described. (English)
Keyword: almost geodesic mappings
Keyword: affine connection space
MSC: 53B05
MSC: 53B99
idZBL: Zbl 1073.53023
idMR: MR2124599
.
Date available: 2009-08-21T12:53:43Z
Last updated: 2012-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/132950
.
Reference: [1] Berezovsky V. E., Mikeš J.: On the classification of almost geodesic mappings of affine-connected spaces.In: Proc. Conf., Dubrovnik (Yugoslavia) 1988, 41–48 (1989). MR 1040054
Reference: [2] Berezovsky V. E., Mikeš J.: On almost geodesic mappings of the type $\pi _1$ of Riemannian spaces preserving a system $n$-orthogonal hypersurfaces.Suppl. Rend. Circ. Mat. Palermo, II. Ser. 59, 103–108 (1999). MR 1692261
Reference: [3] Chernyshenko V. M.: Räume mit einem speziellen Komplex von geodätischen Linien.Tr. Semin. Vektor. Tenzor. Anal. 11 (1961), 253–268 (in Russian). Zbl 0156.41804
Reference: [4] Mikeš J.: Holomorphically projective mappings and their generalizations.J. Math. Sci., New York 89, 3 (1998), 1334–1353. Zbl 0983.53013, MR 1619720
Reference: [5] Sinyukov N. S.: On geodesic mappings of Riemannian spaces. : Nauka, Moscow., 1979 (in Russian). MR 0552022
Reference: [6] Sinyukov N. S.: Almost geodesic mappings of affine connected and Riemannian spaces.Itogi Nauki Tekh., Ser. Probl. Geom. 13 (1982), 3–26 (in Russian); J. Sov. Math. 25 (1984), 1235–1249. Zbl 0498.53010, MR 0674123
.

Files

Files Size Format View
ActaOlom_43-2004-1_2.pdf 354.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo